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ABSTRACT OF THE DISSERTATION

Path-Space Differentiable Rendering

By

Cheng Zhang

Doctor of Philosophy in Computer Science

University of California, Irvine, 2022

Professor Shuang Zhao, Chair

Physics-based differentiable rendering—which is concerned with estimating derivatives of

photorealistic rendering with respect to arbitrary scene parameters—has a diverse array

of applications from solving inverse-rendering (aka. analysis-by-synthesis) problems to in-

corporating forward rendering into probabilistic-inference and machine-learning pipelines.

Recently, great progress has been made in physics-based differentiable rendering. Unfortu-

nately, most existing techniques lack the generality to support volumetric light transport

and the efficiency to handle complex geometries and light transport effects.

To address these problems, we introduce in this dissertation a fundamentally new path-space

differentiable rendering framework. Specifically, by differentiating the forward-rendering

path integrals with respect to arbitrary scene parameters, we establish the mathematical

formulation of differential path integrals that capture both interfacial and volumetric light

transport.

Based on this formulation, we develop new unbiased and consistent differentiable rendering

algorithms capable of efficiently handling challenging geometric discontinuities and light-

transport phenomena such as soft shadows, interreflection, and caustics.

To further improve the robustness of our techniques, we leverage antithetic sampling to

x



efficiently differentiate glossy BSDFs and pixel reconstruction filters.

Lastly, we present the formulation of differential image-loss path integrals that expresses

gradients of image losses as another form of differential path integrals. Based on this formu-

lation, we develop a new approach that allows reverse-mode automatic differentiation to be

integrated efficiently into our path-space differentiable rendering algorithms.
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Chapter 1

Introduction

The goal of this dissertation is to develop general-purpose and efficient algorithms for physics-

based differentiable rendering. To be specific, we expect the algorithms to be capable of

numerically estimating derivatives of rendered images that exhibit complex light-transport

effects (e.g., soft shadows, interreflection, and volumetric scatterings) with respect to arbi-

trary scene parameters (e.g., the shape or reflectance of an object, the position of a light

source, and the pose of a camera). To this end, we concentrate on devising differential vari-

ants of mathematical formulations previously developed for forward rendering. These new

differential formulations will then serve as the theoretical foundation for the development of

new Monte Carlo differentiable-rendering methods.

In the past few years, significant progresses have been made in physics-based differentiable

rendering. Starting with the realization that forward rendering is generally differentiable—

even with the presence of discontinuities emerging from occlusions—general-purpose algo-

rithms have been developed for interfacial [45, 49, 4] and volumetric [95] light transport.

Unfortunately, these methods suffer from several fundamental limitations. First, some of

them [45, 95] require detecting object silhouettes and, thus, scale poorly to scenes with com-

1



plex geometries. Second, all these methods rely on unidirectional path tracing—which is

known to lack the robustness for handling many complex light-transport effects.

To overcome these limitations, in this dissertation, we establish the mathematical formula-

tion of differential path integrals—the differential counterpart of (forward-rendering) path

integrals [82, 65]. Based on this formulation, we introduce a family of path-space Monte

Carlo algorithms which, compared with state-of-the-art methods, offer a new level of robust-

ness for handling not only detailed geometries but also complex light-transport effects such

as soft shadows, glossy reflection, indirect-dominated illumination, and caustics.

In the following, we begin with a detailed description of what physics-based differentiable

rendering is and why it is important in §1.1. Then, we summarize the contributions of this

dissertation in §1.2 and outline its organization in §1.3. Lastly, we provide an overview of

related research works in §1.4.

1.1 Definition and Motivations

As a core research topic since the inception of computer graphics, physics-based forward ren-

dering aims to synthesize photorealistic images from fully specified virtual scenes by simu-

lating light transport in the scenes. On the contrary, physics-based differentiable rendering is

concerned with computing derivatives of rendered images with respect to differential changes

of virtual scenes. Mathematically, if we treat the forward-rendering process as a function

that maps scene parameters into (photorealistic) images, the specific concern of differen-

tiable rendering is estimating the derivatives of this function. In general, a scene parameter

can be used to describe any aspect of a virtual 3D scene, including, but not limited to, the

geometric representation (e.g., mesh vertices) and associated material properties (e.g., BSDF

parameters) for all objects within the scene (see Figure 1.1)
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Physics-based 

rendering

+

-

Physics-based

differentiable rendering

Geometry Material Camera Light

Scene parameters

Photorealistic image

Differentiate
（e.g., w.r.t. light position）

Derivative image

Figure 1.1: Physics-based forward rendering is about synthesizing photorealistic images
based on fully described virtual scenes. Physics-based differentiable rendering, in contrast,
is concerned with differentiating the forward-rendering process with respect to arbitrary
scene parameters (e.g., the vertical position of the light source outside the window for this
example).

One major application of physics-based differentiable rendering is solving inverse-rendering

(aka. analysis-by-synthesis) problems: That is, the inference of scene parameters from pho-

torealistic images. Efficient and robust solutions can benefit a wide array of applications

such as computational fabrication, remote sensing, robotics, autonomous navigation, and

architectural design.

In general, practical physics-based forward-rendering functions—which capture complicated

interactions among shape, lighting, and material optical properties—cannot be inverted an-

alytically. As a consequence, inverse rendering is typically formulated as optimization prob-

lems that seek scene parameters minimizing some predefined loss function that measures the

difference between rendered and input images.

Differentiable rendering—which allows forward-rendering functions and, in turn, losses to be

3



differentiated with respect to scene parameters—is a key ingredient for applying gradient-

based methods (e.g., stochastic gradient descent and its preconditioned variants) to inverse-

rendering optimizations.

Differentiable rendering also opens the door for integrating forward rendering into probabilistic-

inference and machine-learning pipelines. For instance, many data-driven models are trained

using image losses computed by comparing rendered and target images. Physics-based for-

ward and differentiable rendering allows the rendered images to capture complex optical

phenomena that can, then, be learned during the model training process. It has been

demonstrated by several recent works (e.g., [11]) that making a machine-learning model

physics-aware can greatly improve its generalizability to novel conditions.

1.2 Our Contributions

In this dissertation, we introduce our path-space differentiable rendering (PSDR) framework

that offers a new level of generality by supporting, for example, volumetric light transport,

advanced (e.g., bidirectional) path sampling techniques, and differentiation with respect to

arbitrary scene parameters (e.g., object geometries). Concretely, the technical contributions

of this dissertation include:

� Establishing a new mathematical formulation by differentiating forward-rendering path

integrals [81, 65] under the material-form parameterization with respect to arbi-

trary scene parameters. The resulting differential path integrals consist of com-

pletely separated interior and boundary components that can be estimated indepen-

dently.

� Developing path-space differentiable rendering algorithms that provide unbiased

and consistent estimates of the interior and boundary components of differential path

4



integrals. When estimating the boundary integrals, our technique avoids expensive

silhouette detection [45, 95] without sacrificing unbiasedness.

� Introducing antithetic sampling in the context of path-space differentiable rendering

for efficiently handling (i) glossy and near-specular BSDFs; and (ii) pixel reconstruction

filters.

� Devising the formulation of differential image-loss path integrals that expresses

gradients of image losses as differential path integrals. Based on this formulation,

we develop computational differentiation algorithms to efficiently compute inte-

rior integrals by exploiting the layered structures of the corresponding computational

graphs.

1.3 Organization of the Dissertation

The rest of this dissertation is organized as follows. In Chapter 2, we briefly revisit the

mathematical preliminaries upon which our formulations and algorithms are built. In Chap-

ter 3, we introduce the material-form parameterization which facilitates the derivation of

our formulation of differential path integrals in Chapter 4. Based on this new formulation,

we present in Chapter 5 new unbiased and consistent Monte Carlo estimators that efficiently

estimate the interior and boundary components of differential path integrals.

To further improve the effectiveness of our techniques, we introduce antithetic sampling

in Chapter 6 for efficient differentiation of glossy BSDFs and pixel reconstruction filters,

and differential image-loss path integrals in Chapter 7 for scaling out to large numbers of

scene parameters. Lastly, we discuss in Chapter 8 physics-based inverse rendering—a major

application for our techniques—and show synthetic results.
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Publications. This dissertation covers results from, but not limited to, our following pub-

lications:

� Zhang, Cheng, Bailey Miller, Kai Yan, Ioannis Gkioulekas, and Shuang Zhao. “Path-

Space Differentiable Rendering.” ACM Transactions on Graphics 39, no. 4 (2020).

� Zhang, Cheng, Zihan Yu, and Shuang Zhao. “Path-Space Differentiable Rendering of

Participating Media.” ACM Transactions on Graphics 40, no. 4 (2021): 1–15.

� Zhang, Cheng, Zhao Dong, Michael Doggett, and Shuang Zhao. “Antithetic Sampling

for Monte Carlo Differentiable Rendering.” ACM Transactions on Graphics 40, no. 4

(2021): 1–12.

1.4 Overview of Related Works

Derivatives for rendering. Analytical derivatives have been used in forward rendering

to compute pixel footprints [29], handle specular light paths [13, 32], use Hamiltonian Monte

Carlo to sample paths [46], and enable interactive editing of single-scattering albedo [27].

Arvo [2] presented an analytical method for calculating the gradients of irradiance in diffuse

scenes. Ramamoorthi et al. [68] introduced a first-order analysis of light transport, focusing

on effects such as soft shadows. All these works leverage certain type of derivatives in the

image formation process to facilitate the efficiency and quality of forward rendering rather

than the inverse problem.

Differentiable rendering in vision. Having derivatives of rendered images allows ren-

dering to be efficiently integrated into probabilistic programming [43] and deep learning

pipelines (e.g., as the decoder of an auto-encoder architecture [11]). Many recent works uti-

lize various forms of rendering losses to regularize the training and improve generalization of

6



neural network models [88, 53, 73, 47, 11]. The differentiable renderers in the computer vi-

sion community are mostly based on the rasterization rendering model [48, 38, 44, 57, 26, 66]

with restrictive simplification such as single-bounce illumination.

Physics-based differentiable rendering. Differentiable rendering has been used to solve

analysis-by-synthesis problems in a wide range of applications including volumetric scatter-

ing [21, 20], cloth rendering [41], prefiltering of high-resolution volumes [97], appearance mod-

eling of human teeth [83], fabrication of translucent materials [78], reflectance and lighting

estimation [3, 59], and 3D reconstruction [79]. In order to address the specific requirements

of the downstream tasks, all these methods compute radiance derivatives using algorithms

specialized to specific light transport effects, with no regard to flexibility or generality.

A main challenge towards developing general-purpose differentiable rendering engines has

been the differentiation with respect to scene geometry, which generally requires calculating

additional boundary integrals. To address this problem, Li et al. [45] introduced a Monte

Carlo edge-sampling method that provides unbiased estimates of these boundary integrals.

This technique was then generalized in our DTRT framework [95] to handle volumetric light

transport. All of these edge-sampling techniques do not scale well to complex geometry

due to the necessity for run-time silhouette detection. To avoid sampling on discontinuity

edges, one alternative for handling boundary integrals is to convert them into area integrals

by reparameterizing the integrand [49, 4]. However, these reparamterization-based methods

may lead to biased derivative estimates [49] and all require tracing auxiliary rays to detect

discontinuity locations. Despite their ability to differentiate with respect to arbitrary scene

parameterizations, all these methods are obtained by differentiating the rendering equa-

tion [36] (and the radiative transfer equation [10]), and rely on unidirectional path tracing

for derivative estimations, which can be inefficient when handling complex light transport

effects like concentrated indirect lighting and caustics.

7



Computational differentiation. Automatic differentiation (AD) allows the derivative of

a function specified by a computer program to be evaluated numerically. These techniques

have been widely used in machine learning and statistical inference [22, 86, 51] to obtain

gradients of complex functions (e.g., neural networks). Recently, several general-purpose

AD frameworks such as TensorFlow [1], PyTorch [64], Enoki [31], and Enzyme [55] have been

developed. Further, systematic handling of discontinuities—which has been neglected by

most AD frameworks—has been explored [5]. Most general-purpose differentiable rendering

systems (e.g., Redner [45] and Mitsuba 2 [62]) utilize automatic differentiation, and ours is

no exception. In this dissertation, we mainly focus on differentiable rendering theory and

algorithms, which are orthogonal to the choice of automatic differentiation method.
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Chapter 2

Preliminaries

In this chapter, we briefly review mathematical preliminaries on forward rendering and the

differentiation of integrals—both of which will be used to devise the main results of this

dissertation in later chapters.

Specifically, we first revisit in §2.1 important equations that specify steady-state radiance

distributions under interfacial and volumetric light transport. These equations have led

to the development of widely adopted forward-rendering methods like unidirectional path

tracing.

Additionally, to facilitate the design of more advanced rendering methods such as bidirec-

tional path tracing (BDPT) [82], techniques that formulate forward rendering as estimating

high-dimensional path integrals have been introduced [81, 65]. We will present these formu-

lations in §2.2.

Table 2.1 summarizes some commonly used notations in forward rendering.

Lastly, we present in §2.3.1 the Reynolds transport theorem, which has been the foundation

of several recent differentiable rendering algorithms [45, 95]. We will derive many theoretical
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Symbol Definition

fs bidirectional scattering distribution function (BSDF)
σs scattering coefficient
σt extinction coefficient
fp single-scattering phase function

T (x↔ y) transmittance between x and y
We sensor importance
M union of all object surfaces in the scene
V 3D volume encapsulating the virtual scene
V0 volume interior V0 := V \M

xM(x,ω) ray-casting function
Ω path space/generalized path space

G(x↔ y) geometric term/generalized geometric term
x̄ light transport path

f(x̄)
measurement contribution function

generalized measurement contribution function

Table 2.1: List of commonly used symbols in forward rendering

results—including the establishment of the differential path integral formulation—using this

theorem. Additionally, we provide a brief discussion in §2.3.2 about automatic differentiation

which, as the bedrock of differentiable programming, is an important tool for evaluating the

derivatives of a function specified by a computer program. We will use it to implement our

path-space differentiable rendering algorithms.

2.1 Light Transport Equations

We now review the key equations that model the propagation of light in virtual scenes.

Specifically, we first present the rendering equation (§2.1.1) that governs light interaction

with surfaces. Then, we cover the radiative transfer equation (§2.1.2) that captures light

propagation in participating media.
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2.1.1 Rendering Equation

In physisc-based rendering, the bidirectional scttering distribution function (BSDF)

is a mathematical description of light-scattering properties of a surface. At a specific surface

point x, BSDF is a 4D function of the incident and scattered radiance:

fs(ωi → ωo) =
dLs(ωo)

Li(ωi) dσ⊥(ωi),
(2.1)

where σ⊥ is the measure of projected solid angle. Integrating both sides of the equation

dLs(ωo) = Li(ωi) fs(ωi → ωo) dσ⊥(ωi) over the unit sphere S2 yields the scattering equa-

tion [14, 81]

Ls(ωo) =

∫

S2
Li(ωi) fs(ωi → ωo) dσ⊥(ωi), (2.2)

which describes the local scattering of light at a single point.

Rendering equation. Provided Eq. (2.2), one can express the outgoing radiance Lo as

the sum of emitted radiance Le and scattered radiance Ls:

Lo(x,ωo) = Le(x,ωo) + Ls(x,ωo)

= Le(x,ωo) +

∫

S2
Li(x,ωi) fs(x,ωo,ωi) dσ⊥(ωi).

(2.3)

In geometric optics, radiance remains constant along rays of light through empty space:

Li(x,ω) = Lo(xM(x,ω),−ω), (2.4)

where xM(x,ω) is the ray-casting function that returns the first intersection (or “hit”)

between the ray originated at x with direction ω and union of all object surfaces M.
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That is, xM(x,ω) := x+ tM(x,ω)ω, where

tM(x,ω) := inf{t > 0 : x+ tω ∈M}. (2.5)

Based on Eq. (2.4), Eq. (2.3) can be rewritten as

L(x,ωo) = Le(x,ωo) +

∫

S2
L(xM(x,ωi),ωi) fs(x,ωo,ωi) dσ⊥(ωi), (2.6)

which is the well known rendering equation [36]. Since Li does not appear in this equation,

we drop the subscript of Lo for notational simplicity. Even though the spherical integral in

the rendering equation (2.6) appears similar to the scattering equation (2.2), the former is

conditioned on the global distribution of radiance (at equilibrium) and is an integral equation

where the unknown quantity L appears on both sides. The form of this equation lends itself

to recursive numerical solutions using Monte Carlo methods.

2.1.2 Radiative Transfer Equation

The radiative transfer theory (RTT) [10] has been used in natural science and application

areas, including biomedical imaging [30], neutron transport [67], material scence [80], remote

sensing and astrophysics [54]. This framework was later introduced to computer graphics [7,

37, 71] to render participating media and translucent materials. At the core of RTT is the

radiative transfer equation (RTE). In its integral form, the RTE states that

L(x,ω) = T (x0 ↔ x)L(x0,ω)

+

∫ R

0

T (x′ ↔ x)σs(x
′)

∫

S2
fp(x′,ωi → ω)L(x′,ωi) dσ(ωi) dr. (2.7)

where σ denotes the solid-angle measure, x′ := x − rω, and x0 := x − Rω with R =

tM(x,−ω) being the distance along the ray originated at x with the direction −ω before
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intersecting1 the medium’s boundary M. The radiance L(x0,ω) is considered a boundary

condition of the RTE and typically estimated using the rendering equation (2.6) in practice.

Lastly, in Eq. (2.7), σs and fp denote, respectively, the medium’s scattering coefficient and

single-scattering phase function, and the transmittance T (x′,x) specifies the fraction

of light that travels from x′ to x without being absorbed or scattered and equals

T (x′ ↔ x) = exp

(
−
∫ τ

0

σt(x− τ ′ω) dτ ′
)
,

where σt is the medium’s extinction coeffient (or optical density) and describes how

frequently light interacts with the medium (by being absorbed or scattered).

Numerical solutions. In general, neither the rendering equation (2.6) nor the radiative

transfer equation (2.7) has analytical solutions. Instead, these equations are typically solved

numerically using Monte Carlo methods—a long-standing research topic on forward render-

ing. One of the most widely adopted solutions is unidirectional path tracing.

2.2 Path Integral Formulations

Physics-based rendering typically amounts to estimating the response of a radiometric

sensor formulated as an integral of incident radiance over the surface of the sensor, modu-

lated by a sensor importance function We:

I =

∫

M×S2
We(x,ω)Li(x,ω) dA(x) dσ⊥(ω). (2.8)

1When the medium in unbounded and an intersection does not exist, R = +∞ and the first term on the
right-hand side of Eq. (2.7) vanishes.
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In practice, rendering an image amounts to estimating one response Ij for each pixel j with

a distinct importance W j
e .

In the following, we present mathematical formulations that express the radiometric re-

sponses I in Eq. (2.8) as high-dimensional path integrals. Specifically, we will first revisit

the interfacial variant [81] in §2.2.1, and then provide the generalized version [65] capable of

handling volumetric light transport in §2.2.2. A main result of this dissertation—which we

will introduce in Chapter 4—is the differential counterparts of these integrals with respect

to arbitrary scene parameters.

2.2.1 Interfacial Path Integral

We now show how interfacial (i.e., surface-only) light transport governed by the rendering

equation (2.6) can be re-expressed as an integration problem. Our presentation roughly

follows Chapter 8 of Eric Veach’s Ph.D. thesis [81].

Rendering equation in three-point form. The rendering equation (2.6) can be refor-

mulated as an integral over object surfaces M as opposed to the unit sphere S2. To be

specific, for any surface points x,x′,x′′ ∈M, we have

L(x′ → x′′) = Le(x
′ → x′′) +

∫

M
L(x→ x′) fs(x→ x′ → x′′)G(x↔ x′) dA(x). (2.9)

In Eq. (2.9), L(x → x′) denotes the radiance leaving x toward x′. That is, L(x → x′) :=

L(x,
−−→
xx′) where

−−→
xx′ := x′−x

‖x′−x‖ indicates the unit vector pointing from x to x′. L(x′ → x′′)

is defined in a similar fashion. Additionally, fs(x → x′ → x′′) := fs(x,
−−→
x′ x,

−−−→
x′ x′′).

Lastly, the geometric term G captures the change of measure from projected solid angle
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in Eq. (2.6) to the surface area in Eq. (2.9):

G(x↔ y) := V(x↔ y)

∣∣n(y) · −→xy
∣∣ ∣∣n(y) · −→xy

∣∣
‖x− y‖2

, (2.10)

where V(x,y) is the mutual visibility function that equals to one when x and y are

mutually visible and zero otherwise.

Applying a similar change of measure to Eq. (2.8) yields:

I =

∫

M×M
We(x→ x′)L(x→ x′)G(x↔ x′) dA(x) dA(x′), (2.11)

where We(x→ x′) := We(x
′,
−−→
x′ x). We note that, in Eq. (2.11), x′ resides on the surface of

the sensor and x→ x′ follows the direction of light flow.

Path integral formulation. By recursively expanding L(x→ x′) in Eq. (2.11) using the

three-point rendering equation (2.9), the sensor response can be represented as

I =
∞∑

N=1

∫

ΩN

f(x̄) dµN(x̄), (2.12)

where x̄ = (x0,x1, . . . ,xN) denotes a light path with x0 on a light source and xN on the

sensor, ΩN :=MN+1, and dµN(x̄) :=
∏N

n=0 dA(xn) is the area-product measure. Addition-

ally, f is the measurement contribution function given by

f(x̄) := Le(x0 → x1)G(x0 ↔ x1)
(
N−1∏

n=1

fs(xn−1 → xn → xn+1)G(xn ↔ xn+1)

)
We(xN−1 → xN). (2.13)

By expressing the emission Le, the sensor importance We, and the BSDF fs in a unified
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fashion via:

fv(xn−1 → xn → xn+1) :=





fs(xn−1 → xn → xn+1), (0 < n < N)

Le(x0 → x1), (n = 0)

We(xN−1 → xN), (n = N)

(2.14)

the measurement contribution in Eq. (2.13) can be simplified to

f(x̄) :=

(
N∏

n=0

fv(xn−1 → xn → xn+1)

)(
N∏

n=1

G(xn−1 ↔ xn)

)
. (2.15)

Further, the path space Ω is defined as the space containing all light paths with finite

lengths

Ω :=
∞⋃

N=1

ΩN , (2.16)

with the associated area-product measure µ provided by

µ(D) :=
∞∑

N=1

µN(ΩN ∩D), (2.17)

for any D ⊂ Ω. Then, the sum over different path lengths in Eq. (2.12) can be omitted,

yielding

I =

∫

Ω

f(x̄) dµ(x̄), (2.18)

which is well known path integral formulation introduced by Veach [81].

2.2.2 Generalized Path Integral

To capture volumetric light transport governed by the radiative transfer equation (RTE) (2.7),

Pauly et al. [65] have introduced a generalization of the path integral formulation presented

in §2.2.1. In the following, we provide a brief derivation of this generalized formulation.
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𝑟

Figure 2.1: Illustration for the change of variables given by Eq. (2.19).

Change of measure. Similar to the derivation of the interfacial path integral (2.18), it

is desired to rewrite the double integral on the right-hand side of the RTE (2.7) as a single

volume integral, which can be achieved based on the relation

dV (x′) = (r2 dσ(ωi)) dr, (2.19)

as illustrated in Figure 2.1.

Then, generalized path integrals can be obtained by recursively expanding the radiance term

L(x′,ωi) in the RTE (2.7) and applying the change of measure in Eq. (2.19). Please refer to

Chapter 3 of Wenzel Jacob’s Ph.D. thesis [34] for a detailed explanation of this process.

Generalized path integral. Let V ⊂ R3 be a 3D volume that encapsulates the virtual

scene, with its boundary being the scene surfacesM and its interior denoted by V0 := V\M.

At a high level, a generalized path integral takes the same form as the interfacial variant

in Eq. (2.18):

I =

∫

Ω

f(x̄) dµ(x̄), (2.20)

with a major distinction that, in a light path x̄ = (x0,x1, . . . ,xN), each xn can be either a

surface vertex (i.e., xn ∈ M) or a volume vertex (i.e., xn ∈ V0). Due to this distinc-
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tion, definitions of the path space Ω, the measure µ(x̄) and the measurement contribution

function f(x̄) need to be generalized accordingly as follows.

Generalized path space and measure. The type of individual vertices in a light path

x̄ = (x0,x1, . . . ,xN) can be characterized using the path characteristic l, an (N + 1)-bit

integer that encodes the type of individual vertices. Specifically, the n-th bit of the binary

representation of l, which we denote as bn(l), equals one if xn is a surface vertex and zero if

it is a volume vertex.

For all N ≥ 1 and 0 ≤ l < 2N+1, the set of all paths with N segments and characteristic l is

Ωl
N :=





(x0, . . . ,xN) :
xn ∈M if bn(l) = 1

xn ∈ V0 if bn(l) = 0




, (2.21)

and the Lebesgue measure µlN on Ωl
N is defined by

dµlN(x̄) :=
N∏

n=0

dµlN,n(xn), (2.22)

where

dµlN,n(xn) :=





dA(xn), (bn(l) = 1)

dV (xn). (bn(l) = 0)

(2.23)

Provided Eqs. (2.21) and (2.22), the generalized path space Ω and the associated mea-

sure µ in Eq. (2.20) can be defined, respectively, as

Ω :=
⋃
N≥1

⋃2N+1−1
l=0 Ωl

N , (2.24)

µ(D) :=
∑

N≥1

∑2N+1−1
l=0 µlN

(
D ∩Ωl

N

)
for any D ⊂ Ω. (2.25)
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Measurement contribution. Similar to the interfacial case, in generalized path inte-

grals (2.20), the (generalized) measurement contribution f is still expressed as the

product of per-vertex contributions fv and per-segment ones G:

f(x̄) :=

(
N∏

n=0

fv(xn−1 → xn → xn+1)

)(
N∏

n=1

G(xn−1 ↔ xn)

)
. (2.26)

To handle volume light transport, the per-vertex term fv(xn−1 → xn → xn+1) is generalized

for volume vertices:

fv(xn−1 → xn → xn+1) :=





fs(xn−1 → xn → xn+1), (0 < n < N and xn ∈M)

σs(xn) fp(xn−1 → xn → xn+1), (0 < n < N and xn ∈ V0)

Le(x0 → x1), (n = 0)

We(xN−1 → xN). (n = N)

(2.27)

Moreover, the per-segment G(x ↔ y) becomes the generalized geometric term defined

as

G(x↔ y) := V(x↔ y)T (x↔ y)
Dx(y)Dy(x)

‖x− y‖2
, (2.28)

where

Dx(y) :=





∣∣n(x) · −→xy
∣∣ , (x ∈M)

1. (x ∈ V0)

(2.29)

Significance of path integrals. The path integrals in Eqs. (2.18) and (2.20) operate

on entire light transport paths—as opposed to radiance fields in the rendering (2.6) and

radiative transfer equations (2.7)—and essentially provide a “global” perspective of light

transport. Consequently, the path integral formulations have enabled the development of

a wide array of advanced forward-rendering techniques such as bidirectional path tracing

(BDPT) [82], vertex connection and merging (VCM) [18], as well as various Markov-Chain
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Monte Carlo methods [81, 32, 65, 39, 12, 24].

2.3 Differentiating Integrals

Physics-based forward rendering, as demonstrated in §2.1 and §2.2, largely amounts to solv-

ing integral equations like Eqs. (2.6) and (2.7), or estimating path integrals defined in

Eqs. (2.18) and (2.20). Consequently, a crucial ingredient for physics-based differentiable

rendering is the differentiation of various forms (e.g., spherical, area, and path) of integrals.

In what follows, we present Reynolds transport theorem—a general mathematical tool for

differentiating integrals in §2.3.1. Additionally, in §2.3.2, we provide a brief discussion on

automatic differentiation—an important computational tool for differentiable programming.

2.3.1 Reynolds Transport Theorem

A problem we will encounter repeatedly in this dissertation is calculating derivatives of

integrals with respect to some parameter θ:

d

dθ

∫

Ω

h(u) dµ(u) = ? (2.30)

where both the domain of integration Ω and the integrand h can depend on θ in general.

Conventionally, Eq. (2.30) is usually calculated by exchanging the differentiation and inte-

gration operations:

d

dθ

∫

Ω

h(u) dµ(u)
?
=

∫

Ω

d

dθ
h(u) dµ(u), (2.31)

where the right-hand side can be computed based on standard numerical methods (e.g.,

Monte Carlo) and differentiable evaluation of the integrand h.
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Although Eq. (2.31) works adequately in many cases, it can break when the integrand h

contains (jump) discontinuities that depend on the parameter θ. For example, we consider

the problem of differentiating the following Riemann integral:

d

dθ

∫ 1

0

H(u− θ) du = ? (2.32)

where H is the Heaviside step function defined as, for any x ∈ R,

H(x) :=





1, (x > 0)

0. (x ≤ 0)

(2.33)

Noting that
∫ 1

0
H(u− θ) du =

∫ 1

θ
du = (1− θ), Eq. (2.32) can be calculated analytically:

d

dθ

∫ 1

0

H(u− θ) du =
d

dθ
(1− θ) = −1. (2.34)

On the contrary, since d
dθ
H(u − θ) ≡ 0, differentiating the integrand leads to an incorrect

result: ∫ 1

0

d

dθ
H(u− θ) du = 0 6= d

dθ

∫ 1

0

H(u− θ) du. (2.35)

We note that many, if not most, integrals in physics-based rendering—including those in

the rendering (2.6) and radiative transfer equations (2.7) as well as path integrals (2.18,

2.20)—have discontinuous integrands. These discontinuities emerge partially from occlusion.

The ray-casting function xM(x,ωi) in the rendering equation (2.6), for instance, generally

contains jump discontinuous with respect to ωi when there is an object occluding another

(see Figure 2.2).

To correctly handle discontinuities integrands, we resort to the Reynolds transport theo-

rem [70]—which originated in fluid mechanics and is a generalization of Leibniz’s rule for

differentiation [17]. In the following, we provide a brief description of this theorem.
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Sources of Discontinuities 
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Boundary edges

(Topological) boundary of an object

Sharp edges

Surface-normal discontinuities 
(e.g., face edges)

Silhouette edges

View-dependent object silhouettesFigure 2.2: In the rendering equation (2.6), the discontinuities partially come from the
mutal occlusion between scene objects. In this example, the ray-casting function xM(x,ωi)
is discontinuous with respect to ωi at the visibility boundary (denoted in yellow).

Theorem 1: Reynolds transport theorem

Let h be a scalar-valued function defined on some n-dimensional manifold Ω(θ) param-

eterized with some θ ∈ R. Additionally, let Γ(θ) ⊂ Ω(θ) be an (n − 1)-dimensional

manifold, which we term as the extended boundary of Ω(θ), given by the union of the

external boundary ∂Ω(θ) and the internal one comprised of jump discontinuity points of

the integrand h. Then, it holds that

d

dθ

(∫

Ω(θ)

h dΩ(θ)

)
=

∫

Ω(θ)

dh

dθ
dΩ(θ) +

∫

Γ(θ)

(
n · dx

dθ

)
∆h dΓ(θ), (2.36)

where dΩ and dΓ respectively denote the standard measures associated with Ω and Γ;

and n is the unit-normal field associated with Γ(θ). Further, for all x ∈ Γ(θ), ∆h equalsa

∆h(x) := lim
ε→0−

h(x+ εn)− lim
ε→0+

h(x+ εn). (2.37)

aWhen x approaches Γ(θ) from the exterior of the domain Ω(θ), the corresponding one-sided limit in
Eq. (2.37) is set to zero.
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Intuitively, Theorem 1 states that the derivative of the integral of a function h over some

domain Ω(θ) equals the sum of:

1. (The first integral) The derivative of h itself integrated over the same domain Ω(θ);

2. (The second integral) The scalar change rate, or “normal velocity”, of the extended

boundary Γ(θ) along the normal direction, modulated by the differences between func-

tion values across Γ(θ).

In the rest of the dissertation, we refer to the first integral on the right-hand side of Eq. (2.36)

as the interior term and the second one as the boundary term.

As a special case, for classical Riemann integrals where Ω is an interval (a, b) ⊂ R and the

integrand h is differentiable everywhere, it holds that Γ = {a, b}, and the boundary integral

in Eq. (2.36) reduces to the sum of the integrand evaluated at a and b. Assuming the

boundary normal n to point toward the positive direction of the x-axis, the scalar normal

velocity
(
n · dx

dθ

)
in Eq. (2.36) becomes da

dθ
at x = a and db

dθ
at x = b. Then, it is easy to

verify that ∆h(b(θ), θ) = h(b(θ), θ) and ∆h(a(θ), θ) = −h(a(θ), θ), yielding

d

dθ

∫ b(θ)

a(θ)

h(x, θ) dx =

∫ b(θ)

a(θ)

d

dθ
h(x, θ) dx

+

(
d

dθ
b(θ)

)
h(b(θ), θ)−

(
d

dθ
a(θ)

)
h(a(θ), θ),

which is known as Leibniz’s rule for differentiation [17].

We will utilize Theorem 1 to devise differential variants of forward-rendering path integrals

of Eq. (2.18) and (2.20) in Chapter 4. Furthermore, based on these differential path integrals,

we will introduce new efficient Monte Carlo methods for path-space differentiable rendering

in Chapter 5.
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2.3.2 Automatic Differentiation

Automatic differentiation (AD) refers to a set of techniques that take a program which

computes a value, and automatically construct a procedure for computing derivatives of that

value. In an AD system, the computations in a program are decomposed into a sequence

of primitive operations which have specified routine for computing derivatives. For a thor-

ough review of automatic differentiation techniques, we refer to the book by Griewank and

Walther [22].

According to the order in which the derivatives are calculated, conventional AD algorithms

are typically categorized into two distinct types: forward-mode and reverse-mode AD.

Forward mode. Forward-mode AD algorithms propagate derivatives from inputs to out-

puts (i.e., following the flow of ordinary computations) by keeping track of derivatives with

respect to every input variable through individual arithmetic operations (based on the prim-

itive differentiation rules). In practice, forward-mode AD is most efficient for differentiating

functions with low-dimensional inputs and high-dimensional outputs.

Reverse mode. On the other hand, reverse-mode AD algorithms evaluate the chain rule

in the reversed order (i.e., from outputs to inputs). This is accomplished by recording a

transcript of operations known as the computation graph in the forward pass that runs

the ordinary program. Then, in a subsequent backward pass, gradients are back-propagated

through the computation graph by applying the chain rule at individual graph nodes.

In contrast to the forward mode, reverse-mode AD is ideal for differentiating functions with

high-dimensional inputs and low-dimensional outputs. This is the case for many applications

in computer graphics, vision, and machine learning. Consequently, many widely adopted AD

frameworks such as TensorFlow [1], PyTorch [64], Enoki [31], and Enzyme [55] focus on reverse-

24



mode AD. Our path-space differentiable rendering algorithms, which we will introduce in

later chapters, are also better suited with reverse-mode AD.
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Chapter 3

Material-Form Parameterization

In this chapter, to facilitate the differentiation of (forward-rendering) path integrals, we

introduce the material-form parameterization (§3.1) that reformulates surface or volume

integrals over evolving domains to those over constant (i.e., non-evolving) domains. We

further show how generalized path integrals can be re-expressed in material forms (§3.2),

which can be differentiated conveniently using Reynolds transport theorem. Lastly, we

provide more details about our implementation of the material-form parameterization (§3.3).

Table 3.1 summarizes the commonly used symbols and their definitions in the material-form

parameterization.

Even though it is also possible to differentiate path integrals directly without any reparam-

eterization, which we have discussed in one of our recent works [94], material-form path

integrals can be differentiated more easily and requires fewer types of discontinuities to be

handled. In this dissertation, we focus on the material-form formulation.
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Symbol Definition

θ abstract scene parameter
M(θ) evolving surface
V(θ) evolving volume
V0(θ) V(θ) \M(θ)
X motion
P reference map
p material point
x spatial point
BM reference surface
BV reference volume
BV0 BV \ BM
p̄ material light path

Ω̂ material path space
X̄ path-level mapping

f̂ material measurement contribution function

Table 3.1: List of commonly used symbols in material-form parameterization

3.1 Material-Form Integrals

In this section, we revisit some concepts (e.g., motion and references) that originated from

fluid mechanics. Based on these concepts, we introduce the material-form parameterization

that can be applied to a surface or volume integral with its integration domain evolving

based on some abstract scene parameter θ.

3.1.1 Evolving Surfaces and Volumes

In §2.2.2, we describe the geoemtry of a 3D virtual scene using the encapsulating volume

V ⊂ R3, along with the union of object surfaces M ⊂ V . Now, we consider the case when

both the volume V and the surfacesM evolve under some parameter θ ∈ R. In addition, we

define V0(θ) := V(θ) \M(θ) as the interior of the evolving volume V .
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Figure 3.1: Material-form parameterization of a block whose horizontal location is
controlled by a parameter θ. In this example, the reference surface BM and volume BV are
selected as the block at some fixed θ = θ0 (illustrated in yellow). Then, the motion X captures
the motion of the block (hence the name) by mapping each point in the reference volume to
the corresponding one in the “moving” block (illustrated in green) via X(·, θ) for any θ.

In fluid mechanics [9, 23], material-form parameterization has been introduced to efficiently

express the evolution of volumes and surfaces. This is achieved using two key ingredients: (i)

reference configurations that are considered fixed associated with (ii) motions that transform

the reference configurations to their evolving counterparts. In what follows, we provide

precise definitions of these concepts.

Reference configurations. The material-form parameterization involves fixed (i.e., inde-

pendent of the parameter θ) reference volume BV ⊂ R3 and reference surface BM ⊂ BV
that correspond, respectively, to the evolving volume V(θ) and surface M(θ). Additionally,

we define BV0 := BV \ BM—which is also fixed—to represent the interior of BV .

To distinguish points in the reference configurations to those belonging to the evolving coun-

terparts, we refer to p ∈ BV as material points and x ∈ V(θ) as spatial points. Similarly,

in the rest of this dissertation, we will use the terms “material” and “spatial” to refer to

quantity defined with respect to the reference (e.g., BM and BV0) and the evolving (e.g., M

and V0) domains, respectively.
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Motion. Associated with the reference volume and surface is a motion X satisfying that:

� For any θ ∈ R, X(·, θ) maps the reference surface BM to its spatial counterpart M(θ)

and (the interior of) the reference volume BV0 to V0(θ) in a C0-continuous and one-to-

one fashion (see Figure 3.1).

� For any fixed material point p ∈ BV , X(p, θ) is differentiable with respect to θ.

Additionally, we define the reference map P as the inverse of the motion X: For any θ,

P(·, θ) := X−1(·, θ) maps the evolving M(θ) and V0(θ) back to their material counterparts

BM and BV0 , respectively.

We will discuss how the reference configurations and associated motion are specified under

practical settings in §3.3.

3.1.2 Material-Form Integrals

The material-form parameterization described in §3.1.1 induces a change of variable from

spatial points to material ones. In the following, we discuss how integrals can be rewritten

using such changes of variables.

Material-form surface integral. Now we consider a surface integral defined on the evolv-

ing surface M(θ):

I =

∫

M(θ)

ϕ(x, θ) dA(x), (3.1)

where x is a spatial point onM(θ) and ϕ is a scalar-valued function. Given the motion X(·, θ),

we apply a change of variable from spatial points x ∈M(θ) to material ones p ∈ BM based
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Reference

configuration

Evolving

surface

Figure 3.2: Given a deformation X(·, θ) with fixed θ ∈ R, the Jacobian term of Eq. (3.3)
equals the ratio of the infinitesimal areas |∆Ax| and |∆Ap|.

on the relation x = X(p, θ), yielding the following material-form surface integral:

I =

∫

BM
ϕ(x, θ) J(p) dA(p), (3.2)

where x = X(p, θ), and J is the Jacobian determinant resulting from the change of variable.

Conceptually, the term J in Eq. (3.2) captures the stretching of infinitesimal surface area.

Precisely, let ∆Ap be an infinitesimal (material) parallelogram with sides αd and αe at some

p ∈ BM. Under the mapping X(·, θ), ∆Ap is transformed into another (spatial) parallelo-

gram ∆Ax with sides dα = X(p+αd, θ)−x and eα = X(p+αe, θ)−x. Then, the Jacobian

determinant J equals the ratio of the infinitesimal area |∆Ax| to |∆Ap|:

J(p) =

∥∥∥∥
dA(x)

dA(p)

∥∥∥∥ = lim
α→0

|∆Ax|
|∆Ap|

= lim
α→0

‖dα × eα‖
‖αd× αe‖ (3.3)

where “×” denotes vector cross product (see Figure 3.2).

Material-form volume integral. Similarly, consider a volume integral of some scalar-

valued function ϕ(x, θ) over some evolving domain V0(θ)

I =

∫

V0(θ)

ϕ(x, θ) dV (x). (3.4)
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Given a motion X(·, θ) that maps material points p ∈ BV0 to spatial points x ∈ V0, we can

rewrite Eq. (3.4) as a material-form volume integral of the form:

I =

∫

BV0

ϕ(x, θ) J(p) dV (p). (3.5)

where x = X(p, θ). As we are dealing with a volume integral, the Jacobian determinant J

now captures the ratio of the infinitesimal volume |∆Vx| to |∆Vp|:

J(p) =

∥∥∥∥
dV (x)

dV (p)

∥∥∥∥ = lim
α→0

|∆Vx|
|∆Vp|

= lim
α→0

|aα × bα · cα|
|αa× αb · αc| , (3.6)

where ∆Vp is a (material) tetrahedron with sides αa, αb and αc; ∆Vx is a (spatial) tetra-

hedron with sides aα = X(p+ αa, θ)− x, bα = X(p+ αb, θ)− x and cα = X(p+ αc, θ)− x.

We will discuss the calculation of J given by Eqs. (3.3) and (3.6) under practical settings in

§3.3.

Advantages. The material-form integrals in Eqs. (3.2) and (3.5) are defined over fixed

reference surfaces or volumes. Compared with their spatial counterparts in Eqs. (3.1) and

(3.4), the material-form integrals can be differentiated more easily using Reynolds transport

theorem. For instance, all (topological) boundaries and jump discontinuities that are “static”

(i.e., fixed) in the reference domains do not need to be handled by boundary integrals.

We will further discuss the advantages of material-form parameterization in §4.1.2 when

differentiating full path integrals.

Multiple parameters. So far, our discussion is limited to the differentiation with respect

to a single parameter. In practice, the scene geometry V is usually controlled by multiple,

say mθ, parameters θ ∈ Rmθ (e.g., positions of individual mesh vertices). In this case, the

motion X also depends on the full parameter vector θ. That is, for any θ ∈ Rmθ , X(·,θ)
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establishes one-to-one mappings from the reference surface BM to M(θ) and volume BV0 to

V0(θ). Since this extension is straightforward, we will mainly focus on the single-parameter

case in the rest of this dissertation for exposition simplicity.

3.2 Material-Form Path Integral

Previously, we introduced the formulation of generalized path integral (§2.2.2), whose inte-

gration domain may depend on geometric parameters (e.g., the shape and pose of an object).

To facilitate the differentiation of path integrals, we now devise material-form path integrals

based on the parameterization presented in §3.1.

In the rest of this chapter, unless otherwise specified, we use “path space” and “path integral”

to indicate the generalized variants given by Eqs. (2.24) and Eq. (2.20), respectively.

Under the path-integral formulation, a light path x̄ = (x0,x1, . . . ,xN) is spatial since all path

vertices are spatial points belonging to the evolving domain V(θ) =M(θ)
⋃ V0(θ). Based on

the material-form parameterization, we define a material light path as p̄ = (p0,p1, . . . ,pN)

where each vertex pn ∈ BV = BM
⋃BV0 is a material point (for n = 0, . . . , N). Following

Eq. (2.21), we denote the set comprised of all material light paths p̄ with N segments and

characteristic l as

Ω̂l
N :=





(p0,p1, . . . ,pN) :
pn ∈ BM if bn(l) = 1

pn ∈ BV0 if bn(l) = 0




, (3.7)

associated with the measure µlN defined in Eq. (2.22), where the surface area and volume

are with respect to the reference surface BM and volume BV0 , respectively. Further, similar
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to the ordinary path space Ω (2.24), we define the material path space Ω̂ as

Ω̂ :=
⋃
N≥1

⋃2N+1−1
l=0 Ω̂l

N , (3.8)

with an associated measure µ defined in Eq. (2.25).

Additionally, for any θ ∈ R, the vertex-level mapping X(·, θ) induces a path-level one X̄(·, θ)

that maps material paths p̄ = (p0, . . . ,pN) to spatial ones x̄ = X̄(p̄, θ) := (x0, . . . ,xN) in a

continuous and one-to-one fashion via xn = X(pn, θ) for all n. By applying this path-level

mapping to the ordinary path integral of Eq. (2.20), we obtain the material-form path

integral:

I =

∫

Ω̂

f̂(p̄) dµ(p̄), (3.9)

where f̂ is the material measurement contribution function defined as

f̂(p̄) := f(x̄)

∥∥∥∥
dµ(x̄)

dµ(p̄)

∥∥∥∥ = f(x̄)
∏

n

J(pn), (3.10)

where the definition of J(p) depends on the type of p:

J(p) :=





∥∥∥dA(x)
dA(p)

∥∥∥ , (p ∈ BM)
∥∥∥dV (x)

dV (p)

∥∥∥ . (p ∈ BV0)
(3.11)

We note that, since the mapping x = X(p, θ) depends on the parameter θ, so would J(p).

Eqs. (3.9—3.11) are key results of this dissertation, and we will discuss how Eq. (3.9) can

be differentiated in §4.1.
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3.3 Reference Configurations and Motion

Theoretically, our material-form formulation presented above allows the use of arbitrary

reference surfaces and volumes as well as associated motions. In practice, a good parameter-

ization allows the corresponding terms, such as the Jacobian determinants and “velocities”

(that we will discuss later), to be calculated conveniently, benefiting the design of differ-

entiable rendering algorithms. In this section, we introduce our choice of references and

motion in details. We focus on the practical setting where the scene volume is expressed in

a tetrahedral mesh with the surfaces given by triangle meshes comprised of (some subset of)

tetrahedron faces.

In practice, to compute derivatives of a path integral at some user-specified θ = θ0, we make

the reference scene geometry BV coincide with the spatial one V(θ) with the parameter θ fixed

at θ0. That is, we choose the reference surface as BM =M(θ0) and volume as BV0 = V0(θ0).

Further, as presented in §3.1.1, for any θ, the motion X produces a mapping X(·, θ) that

transforms material points p ∈ BV to spatial ones x ∈ V in a continuous and one-to-one

fashion. Based on our choice of reference configurations, the mapping X(·, θ0) becomes the

identity map, and J(θ0) = 1.

For calculating derivatives at θ = θ0, we do not need to provide the full motion X explic-

itly. Instead, it suffices to specify, for any material point p ∈ BV , both its spatial counter-

part x(p) := X(p, θ0) and the derivative, or “velocity”,

v(p) :=
dX(p, θ)

dθ

∣∣∣∣
θ=θ0

. (3.12)

Since X(·, θ0) is the identity map, we have x(p) = p. The velocity v, on the other hand, is

typically determined by how the parameter θ affects the scene geometry. In what follows,

we discuss two common scenarios and derive the corresponding derivatives dJ
dθ

∣∣
θ=θ0

of the
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Jacobian determinant J given by Eq. (3.11). We note that, although J(p, θ0) = 1, this

derivative is generally nonzero.

3.3.1 Affine Deformations

When the parameter θ specifies some affine transformation of an object, the corresponding

motion can be expressed as

X(p, θ) = R(θ)p+ t(θ), (3.13)

where R(θ) is an invertible (3× 3)-matrix and t(θ) is a vector satisfying that R(θ0) equals

the identity matrix and t(θ0) = 0. Assuming that Ṙ := dR
dθ

∣∣
θ=θ0

and ṫ := dt
dθ

∣∣
θ=θ0

can be

calculated analytically, we have

v(p) :=
dX(p, θ)

dθ

∣∣∣∣
θ=θ0

= Ṙ p+ ṫ. (3.14)

Given Eq. (3.13), it is easy to verify that

J(p) = |det(R)| , (3.15)

for all p ∈ BV . It follows that the derivative dJ(p)
dθ

∣∣∣
θ=θ0

can be obtained via differentiable

evaluation of Eq. (3.15).

3.3.2 Free-Form Deformations

When the scene geometry is expressed using tetrahedral meshes (or triangle meshes without

participating media), general (non-affine) deformations are typically handled by moving

individual mesh vertices. In this case, we first specify the velocity vi at the i-th mesh

vertex and interpolate the specified velocity continuously in the interior of the mesh. In
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what follows, we first explain the interpolation process and then discuss how the per-vertex

velocities vi is formulated in practice.

Barycentric Interpolation

Provided the per-vertex velocities vi, we treat the mapping X(·, θ0) at any vertex pi as

X(pi, θ) = pi + (θ − θ0)vi, (3.16)

which satisfies that X(pi, θ0) = pi and dX(pi,θ)
dθ

∣∣∣
θ=θ0

= vi. We now specify the velocity v(p)

at any material point p ∈ BV using barycentric interpolation.

Surface points. Let p ∈ BM be a material point located on some triangle mesh and inside

a triangle with vertices pA, pB, and pC. Assume p to have barycentric coordinates (s, t):

That is, p = (1− s− t)pA + spB + tpC. Then, we define the mapping X(p, θ) by treating s

and t as constants:

X(p, θ) = (1− s− t)xA + sxB + txC, (3.17)

where xj = X(pj, θ) = pj + (θ − θ0)vj for j ∈ {A,B,C}.

We now derive the Jacobian term J based on Eq. (3.3). Let d = pB − pA and e = pC − pA,

we have

dα := X(p+ αd, θ)− X(p, θ)

= [(1− s− t− α)xA + (s+ α)xB + txC]−

[(1− s− t)xA + sxB + txC]

=α (xB − xA),

(3.18)
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and, similarly,

eα = X(p+ αe, θ)− X(p, θ) = α (xC − xA). (3.19)

Then, the Jacobian determinant in Eq. (3.3) turns into

J(p) = lim
α→0

‖dα × eα‖
‖αd× αe‖ =

‖(xB − xA)× (xC − xA)‖
‖(pB − pA)× (pC − pA)‖ , (3.20)

which is independent of the barycentric coordinate (s, t). In other words, under the defor-

mation of Eq. (3.17), J remains constant within the triangle. At θ = θ0, it is easy to verify

that J equals one, and the derivative dJ(p)
dθ

∣∣∣
θ=θ0

can be obtained via differentiable evaluation

of Eq. (3.20).

Volume points. Let p ∈ BV0 be a volume vertex inside a tetrahedron with vertices pj for

j ∈ {A,B,C,D}. When p has barycentric coordinates (u, v, w), it holds that p = (1 − u −

v−w)pA +upB +v pC +w pD. Similar to the surface case, we formulate the mapping X(p, θ)

as

X(p, θ) = (1− u− v − w)xA + uxB + v xC + wxD, (3.21)

where xj = X(pj, θ) = pj + (θ − θ0)vj for all j. Similar to the derivation of Eq. (3.3), the

Jacobian determinant defined in Eq. (3.6) becomes

J(p) =
‖(xB − xA)× (xC − xA) · (xD − xA)‖
‖(pB − pA)× (pC − pA) · (pD − pA)‖ , (3.22)

which is constant within the tetrahedron. Similar to the surface case, when θ = θ0, J(p)

equals one for all p inside the tetrahedron. The derivative dJ(p)
dθ

∣∣∣
θ=θ0

, which is generally

nonzero, can be obtained via differentiable evaluation of Eq. (3.22).
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Per-Vertex Velocities

In practice, the per-vertex velocity vi in Eq. (3.16) is implied based on how θ controls each

mesh vertex. For example, if θ specifies a (global) translation along the x-axis, vi = (1 0 0)>

for all i.

On the other hand, if the tetrahedral or triangle mesh contains N vertices, and the dif-

ferentiation is with respect to the position of each vertex, we effectively have a parameter

vector θ = (θ1x, θ1y, θ1z, · · · , θNx, θNy, θNz) ∈ R3N with θix, θiy, θiz indicating the x-, y-, and

z-coordinates of the i-th vertex xi, respectively. Then, we formulate the mapping X(·, θ) at

vertex pi as

X(pi,θ) =




θix

θiy

θiz



. (3.23)

We note that, when computing derivatives at some θ = θ0 with the reference configuration

being the mesh given by θ0, Eq. (3.23) satisfies X(pi,θ0) = pi trivially.

Under this multi-parameter setting, the “velocity” at pi is essentially the partial derivatives of

X(pi,θ) with respect to the individual components of θ. Specifically, according to Eq. (3.23),

it holds that

∂X(pi,θ)

∂θix
=




1

0

0



,

∂X(pi,θ)

∂θiy
=




0

1

0



,

∂X(pi,θ)

∂θiz
=




0

0

1



, (3.24)

and ∂X(pi,θ)
∂θjx

= ∂X(pi,θ)
∂θjy

= ∂X(pi,θ)
∂θjz

= 0 for all j 6= i.

In practice, when computing derivatives at θ = θ0, the simple deformation in Eq. (3.23) can

be implemented by representing the spatial representations of mesh vertices xi as automatic-

differentiation-enabled vectors. Further, the material counterpart pi of xi can be obtained
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by simply “detaching” the latter: That is, pi = detach(xi). In this way, pi takes the same

value of xi but is considered constant (i.e., independent of the parameters θ). The rest of

computation can be accomplished using automatic differentiation, including the barycentric

interpolations in Eqs. (3.17, 3.21) and Jacobian evaluations in Eqs. (3.20, 3.22).
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Chapter 4

Differential Path Integrals

In this chapter, we devise a key result of this dissertation—differential path integrals—by

applying Reynolds transport theorem (§2.3.1) to material-form path integrals (§3.2). This

mathematical formulation will serve as the theoretical foundation for developing several

unbiased and consistent Monte Carlo estimators in later chapters.

Specifically, our objective is to derive derivatives of material-form path integrals defined in

Eq. (3.9) with respect to arbitrary scene parameters that can control, for example, the pose

of an object, the position of a vertex, or the albedo of a surface.

Continuity assumptions. To facilitate the derivation of the derivative, we make the

following assumptions:

A.1 There is no ideal specular surface (e.g., perfect mirror or smooth glass);

A.2 The source emission Le, sensor importance We, BSDFs fs, and phase functions fp are

C0-continuous spatially and directionally;

A.3 The extinction coefficient σt and scattering coefficient σs are continuous in the interior
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of all participating media;

A.4 Discontinuities of the Jacobian determinants J of Eq. (3.11), if they exist, are inde-

pendent of the parameter with respect to which the differentiation is taken.

In practice, when computing derivatives at some θ = θ0, Assumption A.4 is satisfied under

our choice of reference and motion discussed in §3.3. This is because J always equals one at

θ = θ0 (due to X(·, θ0) reducing to the identity map).

Based on Assumptions A.1–A.4, we differentiate full material-form path integrals in §4.1.

In addition, we slightly relax Assumption A.2 by showing how zero-measure sources and

sensors such as point lights and pinhole camera can be handled in §4.2.

4.1 Differentiating Material-Form Path Integrals

Now we derive derivatives of the material-form path integral in Eq. (3.9) with respect to

some arbitrary scene parameter θ ∈ R.

Given the definition of the measure µ in Eq. (2.25), we start with rewriting Eq. (3.9) as

I =
∑

N≥1

2N+1−1∑

l=0

∫

Ω̂l
N

f̂(p̄) dµlN(p̄)

︸ ︷︷ ︸
=: IlN

, (4.1)

where p̄ = (p0, . . . ,pN) is a material light path, and Ω̂l
N , µlN are defined in Eqs. (3.7) and

(2.22), respectively. Then, deriving the derivative dI
dθ

amounts to differentiating I lN for any

fixed N > 0 and path characteristic 0 ≤ l < 2N+1.
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To this end, we first express I lN in a recursive fashion by defining

hN(pN ;pN−1) := J(pN)We(xN−1 → xN), (4.2)

and, for 0 < K ≤ N ,

hK−1(pK−1;pK−2) :=

∫

BK
hK(pK ;pK−1) g(xK ;xK−2,xK−1) dµlN,K(pK), (4.3)

where dµlN,n is defined in Eq. (2.23) and

g(xK ;xK−2,xK−1) := J(pK−1) fv(xK−2 → xK−1 → xK)G(xK−1 ↔ xK). (4.4)

In Eqs. (4.2) and (4.4), the function fv, geometric term G and Jacobian determinant J

are defined in Eqs. (2.27), (2.28) and (3.11), respectively. In Eq. (4.3), the domain of

integration BK is determined by bK(l)—the K-th bit of the given path characteristic l:

BK =





BM, (bK(l) = 1)

BV0 . (bK(l) = 0)

(4.5)

Given Eqs. (4.2–4.5), it is easy to verify that

I lN =

∫

B0
h0(p0) dµlN,0(p0). (4.6)

Then, deriving
dIlN
dθ

amounts to differentiating Eq. (4.3). Under Assumptions A.1–A.4, dis-

continuities of the integrand of Eq. (4.3) emerge solely from the mutual visibility function V

that is a factor of the g function defined in Eq. (4.4). Thus, applying Reynolds transport

theorem yields:

dhK−1

dθ
=

∫

BK

d

dθ
(hK g) dµlN,K +

∫

∂BK
(hK g)

∆G(xK−1 ↔ xK)

G(xK−1 ↔ xK)
v⊥(pK) dµ̇lN,K , (4.7)
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(b)(a)

Figure 4.1: Evolution of discontinuity boundaries: when the scene geometry varies
with the parameter θ, so will the visibility boundaries. In this example, θ controls the
width of the surface M0. Given a fixed point xK−1 (on a surface or inside a medium),
the discontinuity points xK can lay (a) on a curve within an object surface (Mtop in this
example); and (b) within a surface determined by xK−1 and the left edge (in solid black
lines) ofM0. The discontinuity curves and surfaces (illustrated in orange) generally depend
on the parameter θ. After transforming these curves and surfaces back to the reference
configuration using the reference map P(·, θ), v⊥(pK) in Eq. (4.7) captures the change rate
(with respect to θ) of pK along the normal direction of the discontinuity curve or surface
(under reference configurations).

where:

� ∂BK ⊂ BK consists of jump discontinuity points of g(xK ;xK−2,xK−1) with respect to

pK = P(xK , θ) (viz. the spatial counterpart of xK) when xK−2 and xK−1 are fixed.

Specifically, when bK(l) = 1, the integral in Eq. (4.3) is over all object surfaces BM,

and ∂Bn is a set of curves (see Figure 4.1-a). On the other hand, when bK(l) = 0, the

right-hand side of Eq. (4.3) becomes a volume integral, and ∂BK takes the form of a

collection of surfaces (see Figure 4.1-b).

� v⊥(pK) is the scalar normal velocity of the discontinuity boundary ∂BK at pK (see

Figure 4.1) and can be calculated via

v⊥(pK) :=
dpK
dθ
· n(pK), (4.8)
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where n is the unit-normal field associated with the discontinuity boundary ∂BK (as

a set of curves when pK is a surface vertex or surfaces when pK is a volume vertex).

Further, evaluating the change rate dpK
dθ

in Eq. (4.8) requires locally parameterizing

the discontinuity boundary ∂BK in a neighborhood of pK . We will discuss in practice

how this can be done in §5.2.5. We note that the scalar normal velocity v⊥ is known

to be parameterization independent. In other words, all (valid) local parameterizations

of ∂BK will lead to the same pK .

� ∆G indicates the difference in G(xK−1 ↔ xK) across the discontinuity boundaries.

� The measure µ̇lN,K is defined as

dµ̇lN,K :=





d`, (bK(l) = 1)

dA, (bK(l) = 0)

(4.9)

where ` and A are, respectively, curve-length and surface-area measures.

With Eqs. (4.3) and (4.7), we can now differentiate I lN defined in Eq. (4.6) by repeatedly

expanding hK−1 and dhK−1

dθ
for K = 1, ..., N , resulting in:

dI lN
dθ

=

interior∫

Ω̂l
N

df̂(p̄)

dθ
dµlN(p̄) +

boundary

N∑

K=1

[∫

∂Ω̂l
N,K

∆f̂K(p̄)VK(pK) dµ̇lN,K(p̄)

]
, (4.10)

where

∂Ω̂l
N,K :=

(
K−1∏

n=0

Bn
)
× ∂BK ×

(
N∏

n=K+1

Bn
)
, (4.11)

dµ̇lN,K(p̄) := dµ̇lN,K(pK)
∏

0≤n≤N
n6=K

dµlN,n(pn), (4.12)

∆f̂K(p̄) := f̂(p̄)
∆G(xK ↔ xK−1)

G(xK ↔ xK−1)
. (4.13)
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(a) (b) (c) (d)

Figure 4.2: A boundary segment xK−1 xK has property that its interior intersects with
another surface in the scene at exactly one point. This causes the endpoint xK to lie on
the discontinuity boundary of the visibility function V(xK−1 ↔ ·) with xK−1 fixed (and
vise versa). With the presence of participating media, a boundary segment can connect two
surface vertices (a), two volume vertices (d), or one surface and one volume vertices (b, c).

Lastly, we can sum up Eq. (4.10) for all N ≥ 1 and 0 ≤ l ≤ 2N+1−1 to obtain our path-space

differentiable rendering formulation.

4.1.1 Differential Path Integral

Based on the derivations above, we obtain a key result of this dissertation:

Differential path integral

The derivative of the material-form path integral (3.9) with respect to some arbitrary

scene parameter θ ∈ R is, in general, a differential path integral of the form:

d

dθ

∫

Ω̂

f̂(p̄) dµ(p̄) =

interior∫

Ω̂

d

dθ
f̂(p̄) dµ(p̄) +

boundary∫

∂Ω̂

∆f̂K(p̄) v⊥(pK) dµ̇(p̄) . (4.14)

In the differential path integral (4.14), the interior term—which is essentially given by

exchanging the differentiation and integration operations on the left-hand side—has the

integrand df̂
dθ

being the derivative of the material measurement contribution f̂ .
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The boundary term of the differential path integral (4.14) is unique to our formulation. In

this term, ∂Ω̂ is the boundary path space defined as

∂Ω̂ :=
⋃
N≥1

⋃2N+1−1
l=0

⋃N
K=1 ∂Ω̂l

N,K , (4.15)

where ∂Ω̂l
N,K is given by Eq. (4.11). The elements of ∂Ω̂ are material boundary paths p̄ =

(p0,p1, . . . ,pN) that are identical to ordinary material paths except for containing exactly

one material boundary segment pK−1 pK (for some 0 < K ≤ N) such that the interior of

its spatial counterpart xK−1 xK given by xK−1 = X(pK−1, θ) and xK = X(pK , θ) intersects the

object surfacesM(θ) at exactly one point (see Figure 4.2). We term xK−1 xK a boundary

segment and the spatial representation x̄ = X̄(p̄, θ) a boundary path.

Associated with the boundary path space ∂Ω̂ is the measure µ̇ satisfying that, given a mate-

rial boundary path p̄ = (p0,p1, . . . ,pN) with characteristic l and boundary segment pK−1 pK ,

it holds that

dµ̇(p̄) =

(∏

n 6=K

dµlN,n(pn)

)




d`(pK), (bK(l) = 1)

dA(pK), (bK(l) = 0)

(4.16)

where dµlN,n is defined in Eq. (2.23).

Additionally, for each boundary path p̄ with a material boundary segment pK−1 pK , v⊥(pK) ∈

R follows the definition in Eq. (4.8) and captures how “fast” (with respect to θ) the discon-

tinuity boundary evolves at pK along the normal direction.

Lastly, the term ∆f̂K(p̄) in Eq. (4.14) denotes the difference in material measurement con-

tribution f̂ across the discontinuity boundary specified by the boundary segment pK−1 pK .

Based on Assumptions A.1–A.4, it holds that

∆f̂K(p̄) = f̂(p̄)
∆G(xK−1 ↔ xK)

G(xK−1 ↔ xK)
, (4.17)
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where ∆G(xK−1 ↔ xK) equals −G(xK−1 ↔ xK) if the normal n(pK) of the discontinuity

boundary at pK points toward a region visible to xK−1, or G(xK−1 ↔ xK) if otherwise. In

other words, ∆f̂K(p̄) = ±f̂(p̄) with the sign based on the direction of the boundary normal

n(pK).

4.1.2 Discussions

Relation with Reynolds transport theorem. Mathematically, our differential path

integral presented in Eq. (4.14) is essentially a generalization of Reynolds transport theorem

of Eq. (2.36) to material-form path integrals.

Non-geometric differentiation. In the special case when a scene parameter θ does not

affect scene geometry (i.e., no visibility boundary depends on θ), the mapping X(·, θ) reduces

to the identity map for all θ. This causes (i) the material path space Ω̂ to become identical

to the ordinary (spatial) one Ω; and (ii) the boundary integral in Eq. (4.14) to vanish.

Advantages of material-form path integrals. Although we have demonstrated in a

recent work [94] that it is possible to differentiate path integrals directly (i.e., with no

reparameterization) using a more general transport relation [9], the resulting derivative is

more complicated and requires handling more types of discontinuities such as topological

boundaries of object surfaces and discontinuities of surface normals or UV coordinates. In

contrast, our material-form path integrals are defined over parameter-independent material

path spaces Ω̂. This allows us to differentiate material-form path integrals directly using

Reynolds transport theorem. Additionally, when handling discontinuities (of measurement

contributions), only discontinuities emerging from visibilities need to be tracked (as other

discontinuities tend to be independent of the parameter θ in the reference configurations).
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Compared with previous methods based on Monte Carlo edge sampling [45, 95], our formu-

lation allows the interior integral to be estimated using path sampling techniques beyond

unidirectional path tracing. Moreover, for Monte Carlo estimation of the boundary term

that requires drawing boundary segments, our formulation leads to new algorithms that do

not rely on silhouette detection—which is required by edge sampling methods but can be

prohibitively expensive for complex scenes. We will present our new Monte Carlo estimators

in the later chapters.

4.2 Supporting Zero-Measure Sources and Detectors

Our derivations of the differential path integral above assume that both the emission Le and

the sensor importance We to be defined over some surfaces—which is the case for area lights

and cameras with finite (but nonzero) apertures.

On the other hand, zero-measure detectors and sources such as perspective pinhole cameras

and point lights are ubiquitous in computer graphics and vision. In the following, we discuss

how these models can be incorporated in our framework.

Perspective pinhole cameras and point lights. For a pinhole camera with the center

of projection xcam ∈ V , any light transport path must terminate at xcam to have a nonzero

measurement contribution. For a light path (x0, . . . ,xN ,xcam), the sensor importance of the

pinhole camera equals1

W pinhole
e (xN) :=

G(xN ↔ xcam)P(x⊥N)

(ncam · −−−−−→xcam xN)3
, (4.18)

where G is the geometric term of Eq. (2.28), ncam is the camera’s axis of projection, and

1The geometric term G resulting from the change of measure in Eq. (2.11) is absorbed into Eq. (4.18) for
defining the sensor importance of a pinhole camera.
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Pixel recon. filter

Unit

distance

Figure 4.3: A perspective pinhole camera is specified by its center of projection xcam ∈ V ,
axis of projection ncam ∈ S2, and per-pixel reconstruction filters h defined over an imaginary
image plane.

−−−−−→xcam xN denotes the unit vector pointing from xcam toward xN . In addition, as illustrated

in Figure 4.3, x⊥N is the projection of xN on the image plane (that is assumed to be unit-

distance from xcam and perpendicular to ncam), and P indicates the pixel reconstruction

filter—which we assume to be C0.

Since restricting the last vertex of a light path to be exactly at xcam requires introducing

Dirac delta functions to the sensor importance, we do not treat xcam as an endpoint of all

light paths. Instead, we encode its contributions in the sensor importance as follows. For

any path (x0, . . . ,xN) with xN being a standard surface or volume vertex, we set

We(xN−1 → xN) := fv(xN−1 → xN → xcam)W pinhole
e (xN), (4.19)

where fv is defined in Eq. (2.27). Then, as demonstrated in Figure 4.4–(a), the measurement

contribution of a light path (x0, . . . ,xN) with the detector importance of Eq. (4.19) equals

that of (x0, . . . ,xN ,xcam) with Eq. (4.18).

Similarly, with a (uniform) point light located at xsrc, we encode the contributions related

to xsrc in the emission Le by setting
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(b)

Figure 4.4: Perspective pinhole camera: (a) To support this camera model, we encode
the contribution of the segment xN xcam illustrated as gray dashed arrows in the detector
importance function via Eq. (4.19). (b) We also allow xN xcam to be a boundary segment to
capture the additional discontinuities introduced by this segment.

Le(x0 → x1) := fv(xsrc → x0 → x1)G(xsrc ↔ x0) Isrc, (4.20)

where Isrc denotes the intensity of the point light.

Our formulations of Eqs. (4.19) and (4.20) essentially make all surface or volume points on

the detector and the source, respectively, allowing pinhole cameras and point lights to be

handled without introducing Dirac deltas to measurement contribution functions.

Handling discontinuities. The inclusion of the geometric termG(xN ↔ xcam) in Eq. (4.19)

and G(xsrc ↔ x0) in Eq. (4.20) can violate Assumption A.2 (that requires We and Le to

be continuous). Fortunately, this can be handled easily by including a new set of material

boundary paths in the boundary term of the differential path integral (4.14).

Specifically, for pinhole cameras, we consider p̄ = (p0, . . . ,pN) such that pN is a discontinuity

point of G(xN ↔ xcam). In other words, we allow xN xcam to be a boundary segment (see

Figure 4.4-b). Similarly, when handling point lights, we track discontinuities of x0 such that

xsrc x0 is effectively a boundary segment.
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Other zero-measure detectors and sources. Using the formulations outlined in Eqs. (4.19)

and (4.20), other zero-measure detectors (e.g., orthographic cameras) and sources (e.g., di-

rectional lights) can be handled in a similar manner. In case of a directional light with

incident direction ωsrc, we can encode its contributions in the emission by letting

Le(x0 → x1) := fv(x0,ωsrc,
−−→x0x1)V(x0,ωsrc) Isrc, (4.21)

where V(x0,ωsrc), which can be discontinuous with respect to x0, indicates whether a ray

with origin x0 and direction ωsrc can reach infinity without being occluded.
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Chapter 5

Monte Carlo Estimation of

Differential Path Integrals

Similar to the path integral formulation that has led to advanced Monte Carlo solutions

(e.g., bidirectional path tracing [82]) for forward rendering, our differential path integral

established in Chapter 4 serves as a mathematical foundation for the development of Monte

Carlo differentiable rendering techniques.

In this chapter, we introduce new unbiased and consistent Monte Carlo estimators for differ-

ential path integrals. We focus on the problem of estimating dI
dθ

∣∣
θ=θ0

for some user-specified

θ0 ∈ R with the reference configurations and motion as described in §3.3.

Because of the completely separated interior and boundary components of the differential

path integral (4.14), we compute these terms independently using Monte Carlo estimators

that we present in §5.1 and §5.2, respectively. Additionally, we validate and demonstrate

the effectiveness of our Monte Carlo estimators in §5.3.
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5.1 Estimating the Interior Integral

When estimating derivatives at some θ = θ0, the interior component of the differential path

integral expressed in Eq. (4.14) has the form

∫

Ω̂

d

dθ
f̂(p̄)

∣∣∣∣
θ=θ0

dµ(p̄). (5.1)

We estimate this term using Monte Carlo integration by (i) sampling a material path p̄ ∈

Ω̂ with some probability density pdf(p̄); and (ii) evaluating the (single-sample) estimator

1
pdf(p̄)

(
d
dθ
f̂(p̄)

∣∣∣
θ=θ0

)
. In the following, we discuss each step in more details.

Path sampling. With our choice of reference and motion discussed in §3.3, the material

path space Ω̂ coincides with the ordinary one Ω(θ0). This allows us to sample the material

path p̄ by re-purposing forward-rendering techniques. In practice, we use unidirectional or

bidirectional path tracing for interfacial light transport and volumetric path tracing algorithm

for volume rendering. We note that, since the path p̄ is considered independent of the

parameter θ, the sampling process does not needs to be differentiated.

Differentiating measurement contributions. With the material path p̄ constructed,

we compute the corresponding spatial path x̄ ∈ Ω by setting xn = X(pn, θ) for each vertex

pn of p̄. At θ = θ0, since the mapping X(·, θ0) reduces to the identity map, xn takes the same

value as pn for all n. On the other hand, the derivative d
dθ
xn
∣∣
θ=θ0

—which can be obtained

by differentiating X(pn, θ) with respect to θ—is generally nonzero. In practice, as discussed

in §3.3.2, the xn = X(pn, θ) can be implemented using barycentric interpolation with dif-

ferentiable (triangle or tetrahedral) mesh vertex positions and constant (i.e., “detached”)

barycentric coordinates. Lastly, we obtain d
dθ
f̂(p̄)

∣∣∣
θ=θ0

using differentiable evaluation of the

material measurement contribution f̂(p̄).
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Further Challenges

Although the process discussed above allows unbiased and consistent estimation of the inte-

rior integral of Eq. (5.1), several challenges remain.

Glossy BSDFs and pixel reconstruction filters. Although Eq. (5.1) can be estimated

by sampling material paths p̄ using re-purposed forward-rendering techniques, the estimates

can suffer from high variance with the presence of, for example, glossy materials. We will

introduce new Monte Carlo methods that leverage antithetic sampling to efficiently handle

derivatives of glossy BSDFs and pixel reconstruction filters in §6.2 and §6.3, respectively.

Efficient differentiation. Many, if not most, practical problems involves many (e.g., 106–

109) parameters. One commonly resorts to the reverse-mode automatic differentiation to

compute all requested derivatives at once. Unfortunately, a severe limitation of reverse-mode

approaches is the requirement of storing detailed transcripts of intermediate computation

steps. In physics-based differentiable rendering, the output is an image consisting of many

pixels, making the storage of computation graph expensive or even infeasible. In Chapter

7, we will present a technique that allows efficient differentiation of material measurement

contributions without storing full computation graphs.

5.2 Estimating the Boundary Integral

We now consider the estimation of the boundary component of our differential path inte-

gral (4.14) given by ∫

∂Ω̂

∆f̂K(p̄) v⊥(pK) dµ̇(p̄). (5.2)
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As explained in §4.1, this integral is over the boundary path space ∂Ω̂—which is unique to our

formulation—comprised of material boundary paths p̄ = (p0,p1, . . . ,pN) that are identical

to the ordinary ones except for containing exactly one material boundary segment pK−1 pK .

The two endpoints of a material boundary segment must satisfy that the corresponding

spatial points xK−1 = X(pK−1, θ) and xK−1 = X(pK−1, θ) are located on visibility boundaries

with respect to each other.

This requirement, unfortunately, makes the sampling of material boundary paths challenging.

For instance, provided one endpoint pK−1 of a material boundary segment, sampling the

other one pK requires identifying silhouette with respect to xK−1 = X(pK−1, θ). To this end,

several previous methods [45, 95] rely on explicit silhouette detection, which scales poorly

to virtual scenes with complex geometries.

In what follows, we introduce a new Monte Carlo method to efficiently estimate Eq. (5.2)

while avoiding explicit silhouette detections.

5.2.1 Multi-Dimensional Form of the Boundary Integral

To efficiently sample a material boundary path p̄ ∈ ∂Ω̂, we introduce a multi-directional

process that reconstructs p̄ from the boundary segment. For notational convenience, we

rename the vertices of p̄ as:

p̄ = (pS
s ,p

S
s−1, . . . ,p

S
0,p

D
0 ,p

D
1 , . . . ,p

D
t ), (5.3)

such that pS
s and pD

t are located, respectively, on the source and the detector;1and pS
0 p

D
0 is

the material boundary segment. Similarly, we rename vertices of the corresponding (spa-

tial) boundary path as x̄ = (xS
s ,x

S
s−1, . . . ,x

S
0,x

D
0 ,x

D
1 , . . . ,x

D
t ), as illustrated in Figure 5.1.

1When the detector is a pinhole camera, as discussed in §4.2, pDt is further connected to the camera’s

center of projection p
(0)
cam (instead of being on the sensor).
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xD
1

Figure 5.1: We rename the vertices of a boundary path such that xS
0 x

D
0 is the boundary

segment (illustrated in red). The source and detector subpaths are shown in yellow and
green, respectively. The arrows in this figure illustrate the physical flow of light (that is from
the source to the detector) and do not indicate how the subpaths are constructed.

Further, we factorize the integrand of the boundary integral in Eq. (5.2) into contributions

of the segment pS
0 p

D
0 , the source subpath p̄S := (pS

s , . . . ,p
S
0), and the detector sub-

path p̄D := (pD
0 , . . . ,p

D
t ), respectively:

∆f̂K(p̄) v⊥(pK) = f̂ B(pS
0,p

D
0 )︸ ︷︷ ︸

boundary seg.

f̂ S(p̄ S;pD
0 )︸ ︷︷ ︸

src. subpath

f̂ D(p̄D;pS
0)︸ ︷︷ ︸

det. subpath

, (5.4)

where

f̂ B(pS
0,p

D
0 ) := ∆G(xS

0 ↔ xD
0 ) v⊥(pD

0 ), (5.5)

f̂ S(p̄S;pD
0 ) := f̂v(pS

1 → pS
0 → pD

0 )
∏s

n=1 f̂v(pS
n+1 → pS

n → pS
n−1)G(xS

n ↔ xS
n−1), (5.6)

f̂ D(p̄D;pS
0) := f̂v(pS

0 → pD
0 → pD

1 )
∏t

n=1 f̂v(pD
n−1 → pD

n → pD
n+1)G(xD

n−1 ↔ xD
n ). (5.7)

In Eqs. (5.6) and (5.7), G is the generalized geometric term. Additionally, f̂v captures both

per-vertex contribution fv of Eq. (2.27) and the Jacobian determinant J of Eq. (3.11). That

is, for any p1,p2,p3 ∈ BV and xn = X(pn, θ) for n = 1, 2, 3:

f̂v(p1 → p2 → p3) := fv(x1 → x2 → x3) J(p2). (5.8)

56



With its integrand expressed using Eq. (5.4), we establish the boundary integral of Eq. (5.2)

in its multi-directional form as:2

∫∫
f̂ B(pS

0,p
D
0 )

[∫
f̂ S(p̄ S;pD

0 ) dp̄S
0

] [∫
f̂ D(p̄D;pS

0) dp̄D
0

]
dpD

0 dpS
0, (5.9)

where the outer integral is over the material boundary segment pS
0 p

D
0 . Additionally, p̄S

0 and

p̄D
0 denote the source and detector subpaths with endpoints pS

0 and pD
0 of the boundary

segment excluded, respectively. That is, p̄S
0 := (pS

s , . . . ,p
S
1) and p̄D

0 := (pD
1 , . . . ,p

D
t ).

In the case of interfacial light transport, both pS
0 and pD

0 would always be surface vertices

(Figure 4.2-a). With the presence of participating media, on the other hand, they both can

be either a surface or a volume vertex, leading to three extra combinations (Figure 4.2-bcd).

5.2.2 Change of Variables

To facilitate efficient sampling of the material boundary segment pS
0 p

D
0 , we apply a series of

changes of variables to Eq. (5.9) as follows. First, we use the predetermined differentiable

mapping X(·, θ) to make the outer integral to be over the corresponding (spatial) boundary

segment xS
0 x

D
0 . In principle, this requires computing the Jacobian determinant

∥∥∥ dpS0 dpD0
dxS

0 dxD
0

∥∥∥

based on the mapping X(·, θ). In practice, because of our choice of reference configurations,

the Jacobian determinant simply equals one (i.e.,
∥∥∥ dpS0 dpD0

dxS
0 dxD

0

∥∥∥ ≡ 1).

Then, let xB be the intersection point between the boundary segment xS
0 x

D
0 and the union

of all object surfaces and ωB =
−−−→
xS

0 x
D
0 be the direction of this segment. We apply another

change of variable to make the outer integral of Eq. (5.9) to be with respect to xB and ωB

2We omit the integral domains and measures in Eq. (5.9) for notational simplicity.
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(b1) (b2)

(a1) (a2)

Figure 5.2: Illustrations for deriving the change-of-variable Jacobian determinants ex-
pressed in Eqs. (5.15)–(5.21).

(as opposed to xS
0 and xD

0 ). That is, we aim to rewrite Eq. (5.9) as:

∫∫
F̂ B(xB,ωB) dωB dxB. (5.10)

We note that the point xB is not a vertex of the resulting boundary path—we will only use

it for sampling xS
0 x

D
0 .

In what follows, we derive the integrand F̂ B(xB,ωB) of the rewritten boundary integral in

Eq. (5.10). This term needs to contain the Jacobian determinant corresponding to the change

of variable from xS
0 and xD

0 to xB and ωB. We base our derivations on the assumption that

all surfaces in the scene are represented using triangle meshes. In this case, xB will always

belong to an edge of some face of the mesh.

To derive the Jacobian determinant, we consider xS
0 fixed and xD

0 located on a visibility

boundary with respect to xS
0. Then, dxS

0 and dxD
0 can be related to dσ(ωB) and d`(xB),

respectively, as follows.
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� When xS
0 is a surface vertex, as illustrated in Figure 5.2-a1, we have

dA(xS
0) | cosφS|
(rS)2

= dσ(ωB), (5.11)

where rS := ‖xB−xS
0‖ is the distance between xB and xS

0; φS is the angle between ωB

and the surface normal at xS
0.

� When xS
0 is a volume vertex, as shown in Figure 5.2-a2, we have

dV (xS
0)

(rS)2
= dσ(ωB) drS. (5.12)

� When xD
0 is a surface vertex, for xS

0 x
D
0 to be a boundary segment with xS

0 fixed, xD
0

must belong to a curve (see Figure 5.2-b1). In this case, we have

d`(xD
0 ) sinφD

rD
=

d`(xB) sinφB

rS
, (5.13)

where rD := ‖xD
0 −xS

0‖ is the distance between xD
0 and xS

0, and φD is the angle between

ωB and the curve’s tangent at xD
0 .

� When xD
0 is a volume vertex, it resides on a surface determined by the point xB and

direction ωB (see Figure 5.2-b2). It follows that

dA(xD
0 )

rD
=

d`(xB) sinφB

rS
drD. (5.14)

Based on the relations given by Eqs. (5.11)–(5.14), we derive the Jacobian determinants for

changes of variables from xS
0 and xD

0 to xB and ωB (as well as rS, rD when needed) and the

corresponding integrand F̂ B. Specifically:

� When both xS
0 and xD

0 are surface vertices, according to Eqs. (5.11) and (5.13), we
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have ∥∥∥∥
dA(xS

0) d`(xD
0 )

d`(xB) dσ(ωB)

∥∥∥∥ = rS rD sinφB

sinφD | cosφS| , (5.15)

and

F̂ B = f̂ B rS rD sinφB

sinφD | cosφS|

[∫
f̂ S dµ

] [∫
f̂ D dµ

]
. (5.16)

� With xS
0 being a surface vertex and xD

0 a volume vertex, multiplying Eqs. (5.11) and

(5.14) yields ∥∥∥∥
dA(xS

0) dA(xD
0 )

d`(xB) dσ(ωB) drD

∥∥∥∥ = rS rD sinφB

| cosφS| , (5.17)

and

F̂ B =

∫ ∞

rS
f̂ B rS rD sinφB

| cosφS|

[∫
f̂ S dµ

] [∫
f̂ D dµ

]
drD. (5.18)

� With xS
0 being a volume vertex and xD

0 a surface vertex, multiplying Eqs. (5.12) and

(5.13) gives ∥∥∥∥
dV (xS

0) d`(xD
0 )

d`(xB) dσ(ωB) drS

∥∥∥∥ = rS rD sinφB

sinφD
, (5.19)

and

F̂ B =

∫ ∞

0

f̂ B rS rD sinφB

sinφD

[∫
f̂ S dµ

] [∫
f̂ D dµ

]
drS. (5.20)

� Lastly, when both xS
0 and xD

0 are volume vertices, according to Eqs. (5.12) and (5.14),

we have ∥∥∥∥
dV (xS

0) dA(xD
0 )

d`(xB) dσ(ωB) drS drD

∥∥∥∥ = rS rD sinφB, (5.21)

and

F̂ B =

∫ ∞

0

∫ ∞

rS
f̂ B rS rD sinφB

[∫
f̂ S dµ

] [∫
f̂ D dµ

]
drD drS. (5.22)
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Algorithm 1: Monte Carlo estimator of the boundary integral (5.9)

1 EstimateBoundaryIntegral()

2 begin
/* Sample boundary segment */

3 Draw (xB,ωB) ∼ P;

4 (xS
0, pdfS)← sampleInteraction(xB,−ωB);

5 (xD
0 , pdfD)← sampleInteraction(xB,ωB);

/* Compute Jacobian determinant */

6 rS ← ‖xB − xS
0‖; rD ← ‖xD − xS

0‖;
7 JB ← rS rD sinφB;
8 if xS

0 is a surface vertex then
9 JB ← JB/| cosφS|;

10 end
11 if xD

0 is a surface vertex then
12 JB ← JB/ sinφD;
13 end

/* Evaluate boundary segment */

14 pS
0 ← xS

0; pD
0 ← xD

0 ;

15 TB ← f̂ B(pS
0,p

D
0 ) JB

P(xB,ωB) pdfS pdfD
;

/* Sample and evaluate source & detector subpaths */

16 T S ← EstimateSourcePath(pS
0; pD

0 );
17 TD ← EstimateDetectorPath(pD

0 ; pS
0);

18 return TB T S TD;

19 end

5.2.3 Sampling Boundary Light Paths

Based on the rewritten form of Eq. (5.10), we develop a generalized multi-directional sam-

pling algorithm (outlined in Algorithm 1) to estimate the boundary integral of Eq. (5.2).

Sampling boundary segment. Our algorithm starts with sampling a point xB ∈ M(θ)

and a direction ωB ∈ S2 from some predetermined probability density P (Line 3). Recall

that xB and ωB will determine the boundary segment xS
0 x

D
0 . When the surfaces M(θ) are

specified using triangle meshes, xB must belong to the union of of all face edges, which we

denote as E(θ) ⊂M(θ). In addition, for each xB ∈ E(θ), the direction ωB needs to satisfy
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the following two conditions:

� First, the line passing xB with direction ωB does not penetrateM(θ) at xB. Precisely,

as shown in Figure 5.3, if the face edge containing xB is shared by two faces with

normal vectors n and n′, we need to have (ωB · n) (ωB · n′) < 0.

� Second, sampleInteraction(xB,−ωB) and sampleInteraction(xB,ωB) should suc-

cessfully return some valid xS
0 and xD

0 , respectively. We will provide more details about

sampleInteraction next.

Provided xB ∈ E(θ) and ωB ∈ S2, we obtain the two endpoints xS
0 and xD

0 of the boundary

segment using the sampleInteraction function (Lines 4 and 5 of Algorithm 1). For any

given x and ω, sampleInteraction(x,ω) returns a randomly sampled volume or surface

vertex at x+tω (for some t ∈ R>0), accompanied with the corresponding probability density.

In practice, we follow the standard procedure in volumetric path tracing by first drawing a

free-flight distance t > 0 from an exponential distribution with the PDF

p(t) = σt(x+ tω) exp

(
−
∫ t

0

σt(x+ sω) ds

)

where σt is the extinction coefficient. For heterogeneous media, this can be achieved using

techniques like delta tracking [87] or differential ratio tracking [60] for strict unbiasedness.

If the line segment connecting x and (x + tω) does not intersect any object surface—that

is, {x + sω : 0 < s < t} ∩M(θ) = ∅—sampleInteraction(x,ω) returns a volume vertex

at (x + tω). Otherwise, the function returns the first intersection (x + t0ω) as a surface

vertex where t0 = inf{0 < s < t : x+ sω ∈M(θ)}.

Sampling subpaths. With the boundary segment xS
0 x

D
0 drawn, we compute the corre-

sponding Jacobian determinant JB (Lines 6–12) based on Eqs. (5.15), (5.17), (5.19) and
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Figure 5.3: Sampling the boundary segment: When xB lies on an edge of a polygonal
mesh that is shared by two faces with normals n and n′, the direction ωB needs to satisfy
(ωB ·n)(ωB ·n′) < 0 (i.e., the green region) for the resulting segment xS

0 x
D
0 to be a (spatial)

boundary segment.

(5.21). This allows the contribution TB of the boundary segment xS
0 x

D
0 to be computed

(Line 15). Lastly, we estimate the contributions of the source and detector subpaths p̄S and

p̄D, respectively, using standard techniques such as volumetric path tracing (Lines 16 and

17), completing our estimation of the boundary integral of Eq. (5.2).

Next-event estimation. To improve the efficiency of boundary-path sampling, we adopt

next-event estimation (NEE), a technique widely used by forward rendering algorithms, as

follows. We consider (material) direct boundary paths p̄ ∈ ⋃∞N=2 ∂Ω̂N,1, in analogy with

direct-illumination paths in unidirectional path tracing, where ∂Ω̂N,1 is defined in Eq. (4.11).

Then, a direct boundary path takes the form p̄ = (pS
0,p

D
0 ,p

D
1 , . . .) with the material boundary

segment pS
0 p

D
0 . To construct a direct boundary path, instead of sampling ωB ∈ S2 after

obtaining xB (Line 3), we sample the endpoint xS
0 directly on the surface of a light source

and set ωB =
−−−→
xS

0 x
B. Further, since pS

0 = P(xS
0, θ) is already an endpoint of the path p̄,

source subpaths do not need to be constructed from pS
0.

Pinhole cameras and point lights. Given a boundary path x̄ = (x0,x1, . . . ,xN), as

discussed in §4.2, we allow xN xcam to be an effective boundary segment—despite not treating

xcam as a path vertex—to handle pinhole cameras (see Figure 4.4-b). In our multi-directional
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sampling algorithm, the segment xN xcam can be obtained by connecting the sampled point

xB ∈ E(θ) to the camera’s center of projection xcam. In this case, the direction ωB simply

equals
−−−−−→
xB xcam, and only the source subpath p̄ S needs to be sampled. Similarly, when dealing

with point lights, we allow xsrc x0 to be an effective boundary segment. Then, ωB =
−−−−→
xsrc x

B,

and only the detector subpath p̄D needs to be constructed.

5.2.4 Grid-Based Importance Sampling

In Algorithm 1, a key step is to sample xB ∈ E(θ) and ωB ∈ S2 (Line 3). To this end, a

naive way to sample both xB and ωB uniformly. Unfortunately, this can result in estimates

of high variance, due to the complexity of the integrand F̂ B(xB,ωB) defined in Eq. (5.10).

Instead, we would like to importance sample xB and ωB jointly, with a probability density

P(xB,ωB) proportional to the integrand. That is, P(xB,ωB) ∝ F̂ B(xB,ωB).

Although this probability is difficult to compute analytically, we note that the total dimen-

sionality of the domains from which xB and ωB are drawn is only three. Specifically, the

union of all face edges E(θ) has dimensionality one; and the set of all valid directions ωB, as

illustrated in Figure 5.3, is a subset of S2 with dimensionality two. We take this advantage

of low dimensionality to develop a simple method for importance sampling xB and ωB as

follows.

We represent the probability density P(xB,ωB) as a piecewise constant function using a

regular 3D grid, and precompute this grid during preprocessing. Then, for each cell Ci of

the grid, the corresponding probability value Pi (before normalization) is given by

Pi =

∫

Ci

F̂ B(xB,ωB) dωB dxB, (5.23)

where F̂ B is defined in Eqs. (5.16), (5.18), (5.20), and (5.22).
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To efficiently evaluate Eq. (5.23), we approximate the two integrals
∫
f̂ S dµ and

∫
f̂ D dµ—

which are factors of the function F̂ B(xB,ωB)—by leveraging kernel density estimation us-

ing the pre-generated photon and importon maps. Specifically, given the boundary seg-

ment xS
0 x

D
0 , by performing a nearest-neighbor (NN) search in the photon map around xS

0,

we can approximate the contribution of the source subpath as

∫

Ω̂

f̂ S dµ ≈ 1

A

∑

p

f̂s(x
S
0,ωp,ωB) Φp, (5.24)

where A is the area/volume of the search neighborhood, Φp denotes the power of the p-th

photon in the neighborhood, and ωp is the photon’s incident direction. A similar estimate

can be formed using the importon map for the contribution
∫

Ω̂
f̂ D dµ of the detector subpath.

We emphasize that, even though our estimate of P(xB,ωB) is biased, the resulting esti-

mator of the boundary integral remains unbiased, as P(xB,ωB) is only used to importance

sample xB and ωB. In practice, we precompute two probability densities Pdirect(x
B,ωB)

and Pindirect(x
B,ωB) for importance sampling the direct and the indirect boundary paths,

respectively.

5.2.5 Computing Change Rates of Discontinuity Boundaries

A key term in Eq. (5.2) is the “normal velocity” v⊥(pK) that captures the scalar change

rate of the discontinuity boundary along the normal direction (with respect to the scene

parameter θ).

In practice, evaluating this term using Eq. (4.8) largely amounts to computing the derivative

dpK
dθ

that, in turn, requires parameterizing the corresponding discontinuity curve or surface

near pK . Under our multi-directional formulation described in §5.2.2, pK is renamed as pD
0 .

In what follows, we discuss the computation of v⊥(pD
0 ) at some user-specified θ = θ0 (with
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the reference configurations selected as described in §3.3.2) while treating pS
0 as fixed.

To obtain pD
0 and, more importantly, its derivative

dpD0
dθ

∣∣∣
θ=θ0

, we first compute xD
0 ∈ V(θ0)

in a differentiable fashion and then transform it back to the reference surface or volume.

Without loss of generality, assume that

xB = ξ1 xP + (1− ξ1)xQ, ωB =
−−−→
xS

0 x
B =

xB − xS
0

‖xB − xS
0‖
, (5.25)

where xP,xQ ∈M(θ0) are positions of the two adjacent mesh vertices satisfying that the face

edge xP xQ contains xB, and ξ1 ∈ [0, 1) is some real number that is considered independent

of θ. In Eq. (5.25), xP, xQ, and xS
0 can all be expressed as automatic-differentiation-enabled

vectors (as discussed in §3.3.2). We now discuss how xD
0 and pD

0 —both of which depend on

the scene parameter θ in general—can be computed in a differentiable fashion given xB and

ωB. After obtaining the derivative
dpD0
dθ

∣∣∣
θ=θ0

, we can compute the scalar change rate v⊥(pD
0 )

using Eq. (4.8).

Surface case. When xD
0 is a surface vertex, as illustrated in Figure 5.2-b1, xD

0 and its

derivative
dxD

0

dθ

∣∣∣
θ=θ0

can be computed via differentiable evaluation of the ray-casting func-

tion xM(xB,ωB):

xD
0 = xM(xB,ωB) = xB + tM(xB,ωB)ωB. (5.26)

Then, we obtain pD
0 by transforming xD

0 back to the reference surface as follows. Assume

that xD
0 lies within a mesh triangle with vertices xA,xB,xC. We compute the barycentric

coordinate (u1, u2) of xD
0 satisfying that

xD
0 = (1− u1 − u2)xA + u1 xB + u2 xC. (5.27)

We note that, since xD
0 is obtained with differentiable evaluation of Eq. (5.26) (as opposed

to the material-form parameterization), both u1 and u2 generally depend on the parameter
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θ.

To map xD
0 back to the reference surface, given Eq. (5.27), it follows that

pD
0 = (1− u1 − u2)pA + u1 pB + u2 pC, (5.28)

where p∗ = P(x∗, θ0) = detach(x∗) for each ∗ ∈ {A,B,C}.

Given Eqs. (5.25)–(5.28), we essentially parameterize the discontinuity curve locally near pD
0

using ξ1. Lastly, the derivative of pD
0 is given by

dpD
0

dθ

∣∣∣∣
θ=θ0

= −(u̇1 + u̇2)pA + u̇1 pB + u̇2 pC, (5.29)

where u̇j :=
duj
dθ

∣∣∣
θ=θ0

for j = 1, 2.

Volume case. When xD
0 is a volume vertex, as illustrated in Figure 5.2-b2, it must lie on

the discontinuity plane determined by xS
0 and the face edge xP xQ containing xB. Assume

that

xD
0 = xS

0 + ξ2 (xB − xS
0), (5.30)

for some ξ2 ≥ 1. Then, the discontinuity plane containing xD
0 is effectively parameterized

with ξ1 and ξ2 via Eqs. (5.25) and (5.30).

When the motion X describes some affine transformation, as discussed in §3.3.1, we have

pD
0 = R−1

(
xD

0 − t
)
. (5.31)

When a tetrahedral mesh is used to express the motion X, as described in §3.3.2, assume

that xD
0 is located inside a tetrahedron with vertices xA, xB, xC, xD ∈ V(θ0). Similar to

the surface case, we compute the barycentric coordinates (u1, u2, u3) of xD
0 in a differentiable
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fashion (so that they all depend on θ in general). Then, it holds that

pD
0 = (1− u1 − u2 − u3)pA + u1 pB + u2 pC + u3 pD, (5.32)

dpD
0

dθ

∣∣∣∣
θ=θ0

= −(u̇1 + u̇2 + u̇3)pA + u̇1 pB + u̇2 pC + u̇3 pD, (5.33)

where p∗ = detach(x∗) for all ∗ ∈ {A,B,C,D}, and u̇j :=
duj
dθ

∣∣∣
θ=θ0

for j = 1, 2, 3.

5.3 Results

Based on our path-space differentiable rendering algorithms described in §5.1 and §5.2, we

implement the following two Monte Carlo estimators (in C++ on the CPU):

I.1 Our unidirectional estimator uses unidirectional path tracing (PT) for constructing not

only material light paths p̄ for the interior term but also the source and detector

subpaths p̄ S and p̄D for the boundary term.

I.2 Our bidirectional estimator uses bidirectional path tracing (BDPT) for construct all

these paths.

5.3.1 Validations

We validate our unidirectional and bidirectional estimators (I.1, I.2) in Figure 5.4 by compar-

ing derivatives estimated with our method to those obtained using finite differences (FD).

The following virtual scenes are used for the validation:

� The branches scene contains a tree-like object with fine structures (that is outside

the field of view) casting soft shadows on the ground. This object is further embedded
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within an optically thin heterogeneous medium.

� The bust scene consists of a translucent bust with complex geometry and spatially

varying scattering properties. The bust is optically thick and, thus, exhibits strong

multiple scattering.

� The bunny scene contains a diffuse bunny inside a Cornell box. The scene is lit by

two area light sources with the right one facing the ceiling.

� The Veach-egg scene is modeled after the well known scene created by Veach [81]

for demonstracing the effectiveness of BDPT algorithms. This scene involves a large

floor lamp, a small spot light, and a glass egg on a table, and we use a camera setting

to focus on the egg.

� The bumpy-sphere scene consists of a sphere made of rough glass inside a box filled

with a homogeneous participating medium. The sphere is lit by a point light from

above, yielding strong volumetric shadow and caustic effects.

We use perspective pinhole cameras (discussed in §4.2) for all these scenes.

For the branches scene, we compute derivatives with respect to the rotation angle of the

object around the vertical axis. For the bust scene, we differentiate the ordinary image

with respect to the rotation angle of the translucent bust. Derivative images of these two

examples generated using our unidirectional estimator (I.1) closely matches the reference

obtained using finite differences.

For the bunny scene, the differentiation is with respect to the horizontal displayment of

both area lights. For the Veach-egg scene, the derivatives are computed with respect to

the vertical location of an outside-of-view spot light on the right. Both examples involve

light transport effects that are challenging for unidirectional methods. Thus, we use our
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Figure 5.4: Differentiable-rendering validations: Comparison between the derivatives
estimated using our path-space algorithms (Ours) and the references (Ref.) obtained using
finite-differences method. The derivative images are displayed using the same colormap with
different scales.

bidirectional estimator (I.2) for this scene. Again, our results and the references match

closely.

Lastly, for the bumpy-sphere scene, we estimate derivatives with respect to the horizontal

translation of the light source. Our result obtained using the bidirectional estimator (I.2)

matches the one obtained using finite difference method, which still contains some Monte

Carlo noises even after being rendered for many hours.
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Figure 5.5: Evaluation of the effectiveness of our unidirectional estimator (I.1) for surface-
only light transport with complex geometry. All derivative images (other than the finite-
difference reference) are generated under equal sample with the exact running time shown
on the bottom left corner of individual images. Our method runs much faster than edge
sampling and produces a more accurate result than the reparamterization method.

5.3.2 Comparisons

Thanks to our differential path integral formulation introduced in Chapter 4, our Monte

Carlo estimators (I.1, I.2) are capable of handling complex geometric discontinuities and

light transport effects with high efficiency. In what follows, we evaluate the effectiveness

of our method on both aspects. To this end, we compare our results to those generated

using the (unbiased) edge-sampling methods [45, 95] and the (biased) reparameterization

approach [49]. We use two kinds of configurations for these comparisons: (i) scenes with

complex geometry and conclusion; and (ii) those with light transport effects that are known

to make unidirectional methods inefficient (e.g., caustics).

Complex geometry. Previously, sampling points from silhouette edges of a surface point

(i.e., edge sampling) was generally required to obtain unbiased derivative estimates [45, 95]
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with respect to the scene geometry. This process, however, can be prohibitively expensive for

scenes with complex geometries. Another solution is to trade unbiasedness for computational

efficiency by applying a local reparameterization [49]. This method relies on a number of

simplifying assumptions that can be violated in scenes with complex motions, making the

resulting derivatives too biased for inverse rendering applications.

In Figure 5.5, we show equal-sample3 comparisons of derivative images computed by our

unidiretional algorithm and the other two baselines. The examples in this figure contain no

volumetric light transport; and thus can be rendered using both baselines. The details of

the two examples are as follows:

� The branches2 scene is a simplified version of branches scene by removing the em-

bedding heterogeneous medium. Same as the branches scene, we differentiate with

respect to the rotation angle of the object around the vertical axis.

� The puffer-ball involves a highly-detailed mesh generated via physics-based sim-

ilution [98]. This model contains over one million faces and is illuminated by three

emitters of red, green, and blue colors, creating the colored shadows on the ground.

For each light, we use a single parameter to control its size and intensity such that the

total power remians constant. The derivative images are computed with respect to the

paprameter controlling the red light (which casts a blue shadow).

For both scenes, our results closely matches the references generated using the finite-difference

(FD) method. Edge sampling, despite being unbiased, struggled to produce clean results.

Compared to edge sampling, our method is both faster and provides derivative estimates

with much lower noise. The reparameterization method, on the other hand, generates clean

results but with high bias.

3We use CPU-based implementations of both our algorithms and the edge-sampling ones [45, 95]. The
reparameterization method [49], on the other hand, replies on a GPU-based implementation. Due to this
architectural difference, we opt for equal-sample instead of equal-time comparisons, as the former are more
representative of different methods’ relative performance.
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Figure 5.6: Evaluation of the effectiveness of our unidirectional estimator (I.1) with complex
geometry and volumetric light transport. All derivative images are generated under equal
time. Our method runs much faster than DTRT [95] and produces much cleaner derivative
images.

In Figure 5.6, we reuse the Branches and Bust scene (see Figure 5.4), along with their

derivative configurations, to evaluate the efficiency of our unidirectional estimator (I.1). We

compare the derivative images estimated using our method (with low sample counts) to those

obtained by DTRT [95], which is the only framework that supports geometric differentiation

of volumetric light transport other than our generalized path-space formulation. As both

DTRT and our methods are developed on CPU, the comparisons are conducted under equal-

time condition. Because of the complex visibility, DTRT–which relies on explicit detection of

object silhouettes–produces highly noisy derivative estimates for both scenes. Our method,

on the other hand, does not require silhouette detection and can generate much cleaner reults

in equal time.

Complex light transport effect. Another major benefit of our theory is to allow the

interior term (and subpath contributions in the boundary term) to be estimated using sophis-

ticated methods such as bidirectional path tracing (BDPT). We use the scene Veach-egg2
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Figure 5.7: Evaluation of the effectiveness of our unidirectional and bidirectional estimators
(I.1, I.2) using the Veach-egg2 scene. All derivative images (other than the reference) are
generated under equal sample.

to evaluate the performance of our bidirectional estimator (I.2). This scene remains largely

identical to the one used for validation in Figure 5.4, except for using a lower roughness for

the glass egg.

In Figure 5.7, we show derivatives with respect to the vertical displacement of the spot

light estimated using our unidirectional and bidirectional estimators (I.1, I.2), edge sampling,

and biased reparameterization. All results (other than the finite-difference reference) are

generated under equal sample per pixel. Our bidirectional algorithm outperforms the others

significantly by producing accurate and clean derivatives estimates in the caustics area.

We will further demonstrate the practical advantages of our path-space differentiable ren-

dering algorithms in Chapter 8 with more physics-based inverse rendering examples.
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Chapter 6

Efficient Estimation of Interior

Integrals Using Antithetic Sampling

The interior component (5.1) of our differential path integral (4.14), as discussed in §5.1,

can be estimated by repurposing forward-rendering path sampling techniques. Although this

works adequately in many cases, it can lead to poor performance for scenes containing, for

example, glossy materials.

For efficient and robust estimation of the interior integral (5.1), we introduce new Monte

Carlo techniques that leverage antithetic sampling in this chapter.

6.1 Antithetic Sampling Preliminaries

Being a classic variance reduction framework for Monte Carlo estimation, antithetic sam-

pling [25, 19] has been studied in probabilistic inference and machine learning [69, 90]. In

computer graphics, this technique has been explored by several previous works in forward

rendering [77, 63, 76, 75]. In Monte Carlo differentiable rendering, Bangaru et al. [4] have

75



applied antithetic sampling to efficiently handle discontinuity boundaries under the warped-

area formulation.

1D example. The core idea of antithetic sampling is to forgo independent samples and

use (negatively) correlated ones instead. To demonstrate how antithetic sampling works, we

consider the problem of estimating the following 1D integral:

I :=

∫ ∞

−∞
h(x) dx, (6.1)

where the integrand h is approximately an odd function with h(x) ≈ −h(−x). When h

contains high-magnitude positive and negative regions, estimating I using ordinary Monte

Carlo with independent samples can suffer from very slow convergence.

To address this problem, one can draw x from some predetermined probability density p and

then set x∗ := −x, resulting in an antithetic estimator

〈I〉antithetic :=
h(x) + h(x∗)

p(x) + p(x∗)
. (6.2)

Since h(x) + h(x∗) ≈ 0, 〈I〉antithetic can offer significantly lower variance. Please see Ap-

pendix 6.A for a detailed analysis of this antithetic estimator (in a more general setting).

In the following, we introduce new Monte Carlo techniques that leverage antithetic sampling

to efficiently differentiate BSDFs (§6.2) and pixel reconstruction filters (§6.3). Additionally,

we show how these techniques can be applied to full light transport paths (§6.4). Lastly, we

validate and demonstrate the effectiveness of our antithetic sampling techniques (§6.5).
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Figure 6.1: BSDF antithetic sampling: This example contains a simple scene where a
row of reflectors—whose roughnesses decrease from left to right—are lit by a large area light.
When estimating derivatives (with respect to the rotation angle around the horizontal axis),
the computational efficiency of conventional sampling methods declines when the surface
roughnesses decrease, as shown in (a1) and (b1). We use “Edge” and “PS1” to indicate,
respectively, differentiable path tracing with edge sampling [45] and the unidirectional path-
space method. Coupled with the same base methods, our BSDF antithetic sampling offers
significant variance reduction for the interior term in equal time, as shown in (a2) and (b2).

6.2 Antithetic Sampling of BSDFs

BSDF sampling has been a key ingredient for constructing light paths in forward rendering.

Although these techniques can be repurposed for differentiable rendering, the sampling effi-

ciency can be unsatisfactory for glossy scenes—especially when differentiating with respect

to scene geometries. With near-specular reflection and refraction, the estimated derivatives

can even have unbounded variance. This issue exists in most, if not all, existing physics-

based differentiable rendering frameworks, including edge-sampling methods [45, 95] and our

path-space algorithms, as shown in Figure 6.1-(a1, b1).

To understand why this occurs, we examine the interior integral of Eq. (5.1) where the

integrand of this term is given by the derivative df̂(p̄)
dθ

of the material path contribution with

respect to the scene parameter θ. Let pn in the material light path p̄ = (p0, . . . ,pN) be a

77



surface vertex with glossy BSDF, we can rewrite df̂(p̄)
dθ

using product rule:

df̂(p̄)

dθ
=

df̂0(p̄)

dθ
fs(xn−1 → xn → xn+1) + f̂0(p̄)

(
d

dθ
fs(xn−1 → xn → xn−1)

)
, (6.3)

where xn = X(pn, θ) and f̂0 consists of all the other terms in f̂ except fs(xn−1 → xn → xn+1).

For notational simplicity, we rewrite fs(xn−1 → xn → xn+1) as fs(ωi,ωo) with ωo := −−−−−→xn xn+1

and ωi := −−−−−→xn xn−1.

Given the outgoing direction ωo, traditional BSDF sampling techniques (developed for for-

ward rendering) typically draw the incident direction ωi with some probability density pro-

portional to fs(·,ωo). Unfortunately, this can be inefficient when handling the second term

on the right-hand side of Eq. (6.3) due to the vast difference between fs and its derivative

d
dθ
fs—especially when the BSDF is glossy.

Our Method

As discussed in §6.1, integrals with integrands that are approximately odd and contain

high-magnitude positive and negative regions can lead to slow convergence when estimated

using independent samples. In the context of differentiable rendering, such functions emerge

as (geometric) derivatives of glossy or near-specular BSDFs. To address this problem, we

introduce BSDF antithetic sampling, as shown in Figure 6.1-(2a, 2b). We base our derivation

on microfacet BSDFs that generally take the form

fs(ωi,ωo) = D(ωh) f (0)
s (ωi,ωo), (6.4)

where D is the normal distribution function (NDF) parameterized using the half-way

vector ωh := (ωi+ωo)
‖ωi+ωo‖ , and f

(0)
s captures other factors such as Fresnel reflection/transmission

and shadowing/masking terms.
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(a) NDF D(ωh) (b) NDF deriv. dD/dωh

Figure 6.2: Normal distributions D(ωh) usually exhibit point symmetry, causing their
derivatives dD/dωh—which is vector-valued—to possess point symmetry (with respect to the
origin). We visualize an anisotropic normal distribution in (a) and its derivative in (b).

Differentiating Eq. (6.4) with respect to some scene parameter θ yields

dfs(ωi,ωo)

dθ
=

dD(ωh)

dθ
f (0)

s (ωi,ωo) +D(ωh)
df

(0)
s (ωi,ωo)

dθ
, (6.5)

where the NDF derivative dD
dθ

, according to the chain rule, equals

dD

dθ
=

dD

dωh

dωh

dθ
, (6.6)

where dD
dωh

can be obtained by analytically differentiating the NDF (for parametric BSDF

models), and the exact form of dωh

dθ
depends on the differentiable-rendering formulation.

In Eqs. (6.5) and (6.6), f
(0)
s and df

(0)
s

dθ
usually vary slowly, while the normal distribution

function D and its derivative dD
dωh

can vary rapidly for glossy materials.

Symmetry in NDF derivatives. Most, if not all, commonly used normal distributions,

including the Beckmann and the GGX models, are point symmetric. Specifically, under a

local coordinate system with the surface normal aligned with the z-axis, it holds that

D([xh, yh, zh]) = D([−xh,−yh, zh]), (6.7)
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for all x2
h + y2

h + z2
h = 1 and zh > 0. We note that this is the case even for anisotropic normal

distributions. This point symmetry (with respect to the origin) causes the derivative dD
dωh

to

also be point symmetric:

dD

dωh

([xh, yh, zh]) = − dD

dωh

([−xh,−yh, zh]). (6.8)

Figure 6.2 visualizes the NDF and its derivative.

BSDF antithetic sampling. Based on the point symmetry of the NDF derivative, we in-

troduce BSDF antithetic sampling that exploits such symmetries. As shown in Algorithm 2,

the process starts with drawing a half-way vector ωh,1 (Line 3) the same way as in forward

rendering based on the NDF [85] or visible NDF [28]. Then, we take the antithetic sample

ωh,2 = [−xh,−yh, zh] assuming ωh,1 = [xh, yh, zh] under a local coordinate system where the

surface normal is aligned with the z-axis (Line 4).

With the half-way directions ωh,1 and ωh,2 generated, we calculate the corresponding incident

directions ωi,1 and ωi,2 (Line 6) as well as the probability densities p1 and p2 (Line 7). We

note that p1 and p2 are computed solely based on the probability density ph (from which

the ordinary sample ωh,1 is drawn). To be precise, when sampling microfacet BRDFs using

ph = D, we have

pj =
D(ωh,j)

4(ωo · ωh,j)
, for j = 1, 2. (6.9)

In practice, our BSDF antithetic sampling offers several benefits:

� It can provide significant variance reduction for estimating geometric gradients when

the scene is glossy.

� It is very easy to implement (that is, using a few lines of code), as demonstrated in

Algorithm 2.
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Algorithm 2: Antithetic sampling of microfacet BSDFs

1 AntitheticBSDFSample(x,ωo)

2 begin
3 Draw ωh,1 = [xh, yh, zh] ∼ ph; // The ordinary sample

4 Set ωh,2 ← [−xh,−yh, zh]; // The antithetic sample

5 for j ∈ {1, 2} do
6 Compute incident direction ωi,j based on ωo and ωh,j;
7 Compute pj := p(ωi,j) based on ph(ωh,j);

8 end
9 return (ωi,1, p1, ωi,2, p2);

10 end

� Since we draw ωh,1 the same way as in forward rendering, the resulting sampling

pattern is well suited for forward rendering.

� Our BSDF antithetic sampling is not limited to microfacet BSDFs: The same algorithm

can be applied to any BSDF and provide variance reduction as long as the BSDF

derivative is similarly point symmetric.

Differentiable Rendering with BSDF Antithetic Sampling

Our BSDF antithetic sampling can be integrated into the Monte Carlo estimators of the

interior integral of Eq. (5.1). For instance, it can be used to improve our unidirectional

estimator (I.1) via a process outlined in Algorithm 3, which adopts unidirectional path

tracing to sample material light paths p̄. For each path vertex associated with a glossy or

near-specular BSDF, the algorithm draws two incident directions, causing the light path to

branch at this vertex.

Algorithm 3 focuses on the interfacial (i.e., surface-only) case but can be extended to handle

volumetric light transport easily. Further, ray intersections are applied using material points

directly since we assume the reference configurations to be chosen as described in §3.3.
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Algorithm 3: Estimate interior integrals (5.1) using BSDF antithetic sampling

1 estimateInterior(p̄, pdf p̄)
Input: Material path p̄ = (p0,p1, . . .) associated with a probability pdf p̄
Output: Estimate İ of the interior integral (5.1) at θ = θ0

2 begin
3 if p0 is located on a light source then

4 İ ← evalMatContribDeriv(p̄)/pdf p̄ ; // Evaluate

(
df̂(p̄)

dθ

∣∣∣
θ=θ0

)
/pdf p̄

5 else

6 İ ← 0;
7 end
8 if p0 lies on a glossy surface then // Antithetic sampling

9 (ωi,1, pdfσ1 , ωi,2, pdfσ2 )← AntitheticBSDFSample(p0,
−−−→p0 p1);

10 q1 ← xM(p0,ωi,1); q2 ← xM(p0,ωi,2) ; // Ray intersection

11 Convert pdfσ1 , pdfσ2 under the solid-angle measure to pdf1, pdf2 under the
area measure;

/* Let q ⊕ p̄ := (q,p0,p1, . . .) for any q ∈ BM */

12 İ ← İ + estimateInterior(q1 ⊕ p̄, pdf p̄ · (pdf1 + pdf2));

13 İ ← İ + estimateInterior(q2 ⊕ p̄, pdf p̄ · (pdf1 + pdf2));

14 else // Standard sampling

15 (ωi, pdfσ)← BSDFSample(p0,
−−−→p0 p1);

16 q ← xM(p0,ωi); ; // Ray intersection

17 Convert pdfσ under the solid-angle measure to pdf under the area measure;

18 İ ← İ + estimateInterior(q ⊕ p̄, pdf p̄ · pdf);

19 end

20 return İ;

21 end

Next-event estimation. The standard-sampling branch (Lines 15–18) of Algorithm 3

can be easily extended to utilize next-event estimation (NEE). Although this is also possible

for our antithetic sampling (by generating ωi,1 based on a position sample on a light source

and ωi,2 following the same symmetry), we find it unnecessary in practice since antithetic

sampling is only applied when the surface is sufficiently glossy.

Varying parameterizations. Even though our derivation so far is limited to the path-

space parameterization, our antithetic BSDF sampling technique is actually largely inde-

pendent of any specific parameterization; and can also be applied to the edge sampling
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methods [45, 95]. To be precise, the different parameterizations adopted in the two frame-

works would only affect (i) how gradients of individual variables (such as p and ωi) are

calculated; and (ii) how the boundary integral is handled.

Correlating subpaths. By utilizing pairs of correlated samples, our BSDF antithetic

sampling makes a light transport path to branch into two (Line 9 of Algorithm 3) that

start with p1 and p2, respectively. To ensure that the contributions of these two subpaths

mostly cancel out when computing the gradient of L, we use correlated random samples

to generate them. Conceptually, this is similar to computing finite differences using Monte

Carlo methods.

Path branching. When only a small fraction of the scene is (highly) glossy, branching

the light path at each vertex where BSDF antithetic sampling is performed has little impact

on rendering performance. On the other hand, for mostly glossy scenes, frequent antithetic

sampling can yield exponential branching of light paths and lowered performance. We will

introduce a solution to this problem in §6.4.

6.3 Antithetic Sampling of Pixel Filters

Similar to BSDFs, pixel reconstruction filters can also lead to noisy estimates due to high-

magnitude positive and negative regions in their derivatives (as demonstrated in Figure 6.3-

b1). To address this problem, we introduce in the following antithetic sampling of pixel

reconstruction filters (as demonstrated in Figure 6.3-b2).

When devising our antithetic sampling technique, we focus on the perspective pinhole camera

model described in §4.2 with the tent reconstruction filter (to be defined soon). The results,

on the other hand, can be easily generalized to other detector models (such as orthographic
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Figure 6.3: Antithetic sampling of pixel filter: Sampling primary camera rays based on
pixel reconstruction filters can produce high variance when estimating the interior integral
(b1). With our pixel-filter antithetic sampling, significant variance reduction can be achieved
(b2). In this example, the derivatives in (b1) and (b2) are computed with respect to the
bunny’s vertical position, and the ordinary image is shown in (a).

cameras) and pixel reconstruction filters (such as Gaussian).

Tent reconstruction filter. Assuming each pixel to be a square in the image plane I

with edge length d (and surface area d2), the tent reconstruction filter is defined as1

Ptent(y
⊥) :=

1

d2
max

(
1− |y

⊥
s |
d
, 0

)
max

(
1− |y

⊥
t |
d
, 0

)
, (6.10)

where y⊥s := (y⊥ − c) · s and y⊥t := (y⊥ − c) · t with: c ∈ I denotes the center point of the

pixel; s, t ∈ S2 indicate the horizontal and vertical axes of the image plane, respectively.

Recall that, as discussed in section §4.2, we formulate perspective pinhole cameras by en-

coding their responses using the sensor importance via Eq. (4.19). Under this formulation,

for any material light path p̄ = (p0, . . . ,pN−1, q), the material-form path integral (3.9) can

be rewritten as

I =

∫

Ω̂

f̂0(p̄)W pinhole
e (y) J(q)︸ ︷︷ ︸
= f̂(p̄)

dµ(p̄), (6.11)

1We intentionally let the supports of the tent filter from neighboring pixels to overlap, allowing the sum∑
i P

(i)
tent over all pixels to be constant across the image plane.
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where y = X(q, θ); J(q) is defined in Eq. (3.11); and f̂0(p̄) is a factor of the material

measurement contribution f̂(p̄). We denote the last vertex of the material path p̄ as q

(instead of pN) to emphasize that it is directly “connected” to the pinhole camera at xcam.

When differentiating radiometric measurements of a perspective pinhole camera given by

Eq. (6.11) with respect to some scene parameter θ, the interior component of the resulting

derivative takes the form of

∫

Ω̂

d

dθ

(
f̂0(p̄)W pinhole

e (y) J(q)
)

dµ(p̄), (6.12)

When the scene parameter θ affects the geometry of an object that is directly visible to the

camera, for any spatial point y associated with the object, P(y⊥) depends on θ—even if

the filter P itself is constant. This is because, under the material-form parameterization

described in §3.2, we have y = X(q, θ) for some fixed material point q.

Attached sampling. Eq. (6.11) can be reparameterized by applying attached sampling [92]

to the pixel reconstruction filter P , allowing this term to be canceled out entirely (if per-

fect importance sampling is possible) before differentiation. Doing so, however, suffers from

several problems which we will discuss in Appendix 6.B.

Our Method

In practice, the pixel reconstruction filter P , as a function of image-plane positions y⊥, are

usually point-symmetric with respect to the pixel center. This causes the (vector-valued)

spatial derivative dP(y⊥)
dy⊥

to exhibit the same type of symmetry, allowing us to apply antithetic

sampling to reduce the variance introduced by this derivative (see Figure 6.3-b2).

Specifically, the basic idea is to generate pairs of material paths p̄ = (p1,0,p1,1, . . . , q) and
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Figure 6.4: Antithetic sampling pattern: We evaluate the effectiveness of four different
antithetic sampling patterns (c–f) using derivative images of a pyramid-like object viewed
from the top using the tent pixel reconstruction filter (6.10). The derivatives are estimated
with respect to translations along the x- and y-axes (that are within the image plane),
and rotation about the Z axis (that is perpendicular to the image plane), respectively. All
derivative images in (b–f) are generated in equal time.

p̄∗ = (p2,0,p2,1, . . . , q
∗) such that the image-plane projections of y = X(q, θ) and y∗ =

X(q∗, θ) are point-symmetric. This can be achieved by (i) sampling image-plane location y⊥1

based on the reconstruction filter P and setting y⊥2 as the point reflection of y⊥1 ; (ii) tracing

two camera rays through y⊥1 and y⊥2 to obtain spatial points y and y∗, respectively (which in

turn give the corresponding material points q and q∗); and (iii) constructing the remaining

vertices of paths p̄ and p̄∗ using standard methods like unidirectional path tracing (with

correlated random samples).

Antithetic sampling pattern. The aforementioned process couples an ordinary path

with one antithesis (by exploiting point symmetry). Alternatively, we can construct deter-

ministically three antithetic paths using both edge and point symmetry as shown in Fig-
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ure 6.4-f. In theory, the effectiveness of different pixel-filter antithetic sampling patterns

depends on the target derivative. In practice, we found that the four-point pattern usually

offers the best performance at equal time (see Figure 6.4). We will also use this four-point

pattern in our path-level extension, which we will present in §6.4.2.

Limitations. Although the pixel-filter antithetic sampling by generating ordinary and

antithetic paths using correlated samples works adequately in many cases, it suffers from

several major problems. First, it introduces relatively high computational overhead since

two (or even four) full paths p̄ and p̄∗ have to be constructed. Secondly, the process does

not handle an important path-sampling scheme where next-event estimation is applied at

q (by tracing a shadow ray toward the camera at xcam). This scheme is needed by, for

example, adjoint particle tracing (APT) as well as bidirectional path tracing (BDPT). To

address these problems, we introduce a path-level extension in §6.4.2.

6.4 Path-Level Antithetic Sampling

We now show how our BSDF and pixel-filter antithetic sampling (presented in §6.2 and §6.3,

respectively) can be generalized to full light transport paths, allowing more efficient and

robust estimations of the interior integral (5.1).

6.4.1 BSDF Antithetic Sampling At the Path Level

Based on the differential path integral formulation of Eq. (4.14), we introduce a new BSDF

antithetic sampling technique that operates at the path level and enjoys (i) having no expo-

nential branching even for mostly glossy scenes; and (ii) supporting both unidirectional and

bidirectional path sampling methods.
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Figure 6.5: Unidirectional construction of antithetic paths (starting from the de-
tector): In this example, we construct antithetic paths p̄∗i = (p∗i,0,p

∗
i,1, . . . ,p

∗
i,6) for i = 3, 4

based on an ordinary one p̄ = (p0,p1, . . . ,p6) that contains two vertices p3 and p4 (shown
in red) with glossy BSDFs. To obtain the first antithetic path p̄∗3, we apply BSDF antithetic
sampling to p3 (by taking the antithetic sample), resulting in a new incident direction that in
turn yields a new vertex p∗3,2. To obtain the second antithetic path p̄∗4, we take the antithetic
BSDF sample at p4, leading to a new vertex p∗4,3. Since this vertex has a glossy BSDF, we
continue tracing (using standard BSDF sampling) and obtain p∗4,2 before mering back with
the ordinary path.

Our basic idea is to decompose derivatives of the measurement contribution—by applying

the product rule—as the sum of multiple terms each of which involves one BSDF derivative.

In this way, we can apply BSDF antithetic sampling once per term, avoiding exponential

branching. We describe how our technique works in the following and provide detailed

derivations in Appendix 6.C.

Unidirectional sampling. The unidirectional variant of our technique starts with con-

structing an ordinary path p̄ = (p0,p1, . . . ,pN) using unidirectional path tracing. Assume

that I ⊆ {1, 2, . . . , N − 1} denotes the indices of path vertices where BSDF antithetic sam-

pling is needed. For each i ∈ I, we accompany the same ordinary path p̄ with an antithesis p̄∗i

generated by taking the antithetic incident direction sampled at the i-th vertex of the ordi-

nary path p̄.
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To maximize the consistency between p̄ and p̄∗i , we adapt the gradient-domain path trac-

ing (GDPT) [40], a forward-rendering technique. We note that the term “gradient-domain”

in GDPT refers to image-space gradients that differ fundamentally from the scene derivatives

with which differentiable rendering is concerned.

Specifically, given the ordinary path p̄ = (p0, . . . ,pN), our technique builds the antithetic

path p̄∗i = (p∗i,0, . . . ,p
∗
i,N) as follows. The first (i+ 1) vertices of the antithetic path coincide

with those of the ordinary (that is, p∗i,j = pj for all 0 ≤ j ≤ i). The vertex p∗i,i+1 is obtained

by tracing a ray from p∗i,i = pi in the antithetic incident direction (given by our BSDF

sampling). Then, starting from p∗i,i+1, we perform unidirectional path tracing with standard

BSDF sampling until reaching a vertex p∗i,i′ with a non-glossy BSDF for some i′ ≥ i + 1.

Lastly, we merge the antithetic path p̄∗i back to the ordinary after p∗i,i′ by setting p∗i,k = pk

for all k > i′.

Further, for all 0 < j < N , the vertex p∗i,j of the antithetic path Ω̂∗i and the vertex pj of the

ordinary p̄ must be either both glossy or both rough. If this requirement is not satisfied, the

antithetic path is rejected and considered to have zero contribution.

We illustrate this process in Figure 6.5 and demonstrate its effectiveness in Figure 6.6.

Bidirectional sampling. Our ordinary and antithetic paths can also be generated in a

bidirectional fashion. Specifically, we build two ordinary subpaths p̄ S = (pS
0, . . . ,p

S
N) and

p̄D = (pD
0 , . . . ,p

D
M) originated at the source and the detector, respectively. Assume that

BSDF antithetic sampling is needed at vertices with indices IS in the source subpath and ID

in the detector subpath. Then, using the aforementioned unidirectional method, we build

an antithetic source subpath p̄S∗
i for each i ∈ IS and an antithetic detector subpath p̄D∗

j for

each j ∈ ID.

With all ordinary and antithetic subpaths constructed, we then make bidirectional connec-
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Figure 6.6: Our path-level antithetic sampling avoids exponential branching of light
paths. In this example, we show a glossy scene with a bunny inside a box lit by an area
light from the above, leading to many reflections of the bunny (a). Estimating derivatives
with respect to the vertical position of the light using the unidirectional path-space method
without antithetic sampling leads to very high variance (b). Using our BSDF sampling (§6.2)
with the same base algorithm, much cleaner derivative estimates can be obtained (c). How-
ever, since each light path contains many vertices that require BSDF antithetic sampling,
näıvely branching at each vertex has suboptimal performance. Our unidirectional path-level
antithetic sampling (§6.4.1) addresses this problem and produces even lower variance (d).
The derivative estimates in (b—d) are computed in equal time.

tions between the source and the detector subpaths as follows. That is, for each i /∈ IS

and j /∈ ID, we connect pS
i in the ordinary source subpath and pD

j in the ordinary detector

subpath, resulting in a full ordinary path p̄i,j. To obtain the antitheses of this ordinary path,

we reuse the precomputed antithetic subpaths. Please refer to Figure 6.7 for an illustration

of this process.

6.4.2 Pixel-Filter Antithetic Sampling with Vertices Reusing

We now address the limitations discussed in the end of §6.3 by introducing a new antithetic

sampling technique for pixel reconstruction filters.

Given an ordinary path p̄ = (p0, . . . ,pN−1, q), we construct (deterministically) three anti-

thetic paths p̄∗i = (p0, . . . ,pN−1, q
∗
i ) for i = 1, 2, 3. The ordinary and antithetic paths are

identical except for the last vertices q and q∗i : Their image-plane projections of y = X(q, θ)
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Figure 6.7: Bidirectional construction of antithetic paths: Let p̄S = (pS
0, . . . ,p

S
M) be a

pre-generated ordinary source subpath associated with antithesis p̄S∗
j , and p̄D = (pD

0 , . . . ,p
D
N)

be an ordinary detector subpath. Then, for any 0 ≤ i ≤ N and j < j′ ≤ M , connecting
the i-th vertex pD

i on the ordinary detector subpath to, respectively, the j′-th vertex pS
j′

on the ordinary source subpath and pS∗
j,j′ on its antithesis yields complete ordinary and

antithetic paths (pS
0, . . . ,p

S
j′ ,p

D
i , . . . ,p

D
0 ) and (pS∗

j,0, . . . ,p
S∗
j,j′ ,p

D
i , . . . ,p

D
0 ). In this example,

we have j′ = j + 1. Similarly, we can connect a vertex pS
j from the ordinary source subpath

to a pair of vertices pD
i′ and pD∗

i,i′ from the detector subpaths (with i < i′ ≤ N) to form full
ordinary-antithetic light paths.

and y∗i = X(q∗i , θ) are symmetric around the pixel center, as illustrated in Figure 6.8. In

comparison to the pixel-filter antithetic sampling process described in §6.3, the path anti-

thetics q∗i only differ from the ordinary path q∗i by the last vertex. In other words, all vertices

except for the last one (i.e., vertex p) in the ordinary path p̄ are reused by the antithetic

paths p̄i for all i.

Let pdf(p̄) be the probability density of a material path p̄ sampled using standard techniques

such as unidirectional and bidirectional path tracing as well as adjoint particle tracing. When

the mapping (induced by aforementioned construction) between the original path p̄ and the

antithetic one p̄∗i is one-to-one (for each i = 1, 2, 3), we can express the probability density

pdf∗i (p̄
∗
i ) of antithetic path p̄∗i analytically based on pdf(p̄) as follows.
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<latexit sha1_base64="15zILgc5LFPmZygkTZPpkcG0JZ0=">AAACBHicbVDLSsNAFJ3UV62vqks3g0VwVZJS1GXBjcsK9gFtLJPJpB06jzAzEULo1m9wq2t34tb/cOmfOGmzsK0Hhjmccy/3cIKYUW1c99spbWxube+Udyt7+weHR9Xjk66WicKkgyWTqh8gTRgVpGOoYaQfK4J4wEgvmN7mfu+JKE2leDBpTHyOxoJGFCNjpcdhIFmoU26/LJ2NqjW37s4B14lXkBoo0B5Vf4ahxAknwmCGtB54bmz8DClDMSOzyjDRJEZ4isZkYKlAnGg/m6eewQurhDCSyj5h4Fz9u5EhrvNodpIjM9GrXi7+5w0SE934GRVxYojAi0NRwqCRMK8AhlQRbFhqCcKK2qwQT5BC2Niilq4EPO/EW21gnXQbde+q3rxv1lqNop0yOAPn4BJ44Bq0wB1ogw7AQIEX8ArenGfn3flwPhejJafYOQVLcL5+AUv2mZk=</latexit>y

<latexit sha1_base64="r/X4C68yfpTRq4vHmg0omSlFkFQ=">AAACCHicbVDLSsNAFJ3UV62vqEs3wSK4Kkkp6rLgxmUF+4A2hMlk0g6dR5iZFEvID/gNbnXtTtz6Fy79EydtFtp6YJjDOfdyDydMKFHadb+sysbm1vZOdbe2t39weGQfn/SUSCXCXSSokIMQKkwJx11NNMWDRGLIQor74fS28PszLBUR/EHPE+wzOOYkJghqIwW2PQoFjdScmS97zAMvsOtuw13AWSdeSeqgRCewv0eRQCnDXCMKlRp6bqL9DEpNEMV5bZQqnEA0hWM8NJRDhpWfLZLnzoVRIicW0jyunYX6eyODTBXhzCSDeqJWvUL8zxumOr7xM8KTVGOOlofilDpaOEUNTkQkRprODYFIEpPVQRMoIdKmrD9XQpabTrzVBtZJr9nwrhqt+1a93SzbqYIzcA4ugQeuQRvcgQ7oAgRm4Bm8gFfryXqz3q2P5WjFKndOwR9Ynz/9R5pt</latexit>x1

<latexit sha1_base64="DWI9xIgvsrt6o31/gIP6H9taE4k=">AAACCHicbVC7TsMwFHXKq5RXgJHFokJiqpKqAsZKLIxFog+pjSLHcVqrdhzZTkUV5Qf4BlaY2RArf8HIn+C0GaDlSJaPzrlX9+gECaNKO86XVdnY3Nreqe7W9vYPDo/s45OeEqnEpIsFE3IQIEUYjUlXU83IIJEE8YCRfjC9Lfz+jEhFRfyg5wnxOBrHNKIYaSP5tj0KBAvVnJsve8x9x7frTsNZAK4TtyR1UKLj29+jUOCUk1hjhpQauk6ivQxJTTEjeW2UKpIgPEVjMjQ0RpwoL1skz+GFUUIYCWlerOFC/b2RIa6KcGaSIz1Rq14h/ucNUx3deBmNk1STGC8PRSmDWsCiBhhSSbBmc0MQltRkhXiCJMLalPXnSsBz04m72sA66TUb7lWjdd+qt5tlO1VwBs7BJXDBNWiDO9ABXYDBDDyDF/BqPVlv1rv1sRytWOXOKfgD6/MH+7SabA==</latexit>x0

Pixel
center

<latexit sha1_base64="ooI0m3XsSWCBQT0px3CWpun+9jk=">AAACDXicbVC7TsMwFHXKq5RXADGxWFRITFWCKmCsxMJYJPqQ2lA5jtNatePIdpCiKN/AN7DCzIZY+QZG/gSnzUBbrmT53HPu1T06fsyo0o7zbVXW1jc2t6rbtZ3dvf0D+/Coq0QiMelgwYTs+0gRRiPS0VQz0o8lQdxnpOdPbwu990SkoiJ60GlMPI7GEQ0pRtpQI/tk6AsWqJSbL0vzx8z0Oh/ZdafhzAquArcEdVBWe2T/DAOBE04ijRlSauA6sfYyJDXFjOS1YaJIjPAUjcnAwAhxorxsZj+H54YJYCikeZGGM/bvRoa4KhyaSY70RC1rBfmfNkh0eONlNIoTTSI8PxQmDGoBiyxgQCXBmqUGICyp8QrxBEmEtUls4YrPi0zc5QRWQfey4V41mvfNeqtZplMFp+AMXAAXXIMWuANt0AEYZOAFvII369l6tz6sz/loxSp3jsFCWV+/qCOdCQ==</latexit>

y?

<latexit sha1_base64="7hVjifg73zTPSbKM9ZGXpe+LUfg=">AAACD3icbVDLSsNAFJ3UV62vqAsXboJFcFWSUtRlwY3LCrYV2hgmk2k7dB5hZiKEkI/wG9zq2p249RNc+idO2ixs64FhDufcy733hDElSrvut1VZW9/Y3Kpu13Z29/YP7MOjnhKJRLiLBBXyIYQKU8JxVxNN8UMsMWQhxf1welP4/ScsFRH8Xqcx9hkcczIiCGojBfbJMBQ0UikzX5bmAXnMjKLzwK67DXcGZ5V4JamDEp3A/hlGAiUMc40oVGrgubH2Myg1QRTntWGicAzRFI7xwFAOGVZ+Njsgd86NEjkjIc3j2pmpfzsyyFSxo6lkUE/UsleI/3mDRI+u/YzwONGYo/mgUUIdLZwiDSciEiNNU0MgksTs6qAJlBBpk9nClJAVmXjLCaySXrPhXTZad616u1mmUwWn4AxcAA9cgTa4BR3QBQjk4AW8gjfr2Xq3PqzPeWnFKnuOwQKsr18+1J3j</latexit>

y?
i

<latexit sha1_base64="dL1m3HSWPtUI1CmVDdFjEgod5U0=">AAACCnicbVDLSsNAFJ34rPUV69JNsAjioiSlqMuCG5cV7APaGCaTSTt0ZhJmJmII+QO/wa2u3Ylbf8Klf+KkzcK2HhjmcM693MPxY0qksu1vY219Y3Nru7JT3d3bPzg0j2o9GSUC4S6KaCQGPpSYEo67iiiKB7HAkPkU9/3pTeH3H7GQJOL3Ko2xy+CYk5AgqLTkmbWRH9FApkx/WZp75OHCM+t2w57BWiVOSeqgRMczf0ZBhBKGuUIUSjl07Fi5GRSKIIrz6iiROIZoCsd4qCmHDEs3m2XPrTOtBFYYCf24smbq340MMlnE05MMqolc9grxP2+YqPDazQiPE4U5mh8KE2qpyCqKsAIiMFI01QQiQXRWC02ggEjpuhau+CzXnTjLDaySXrPhXDZad616u1m2UwEn4BScAwdcgTa4BR3QBQg8gRfwCt6MZ+Pd+DA+56NrRrlzDBZgfP0ChZObQg==</latexit>

y⇤
i

<latexit sha1_base64="2hK/qLUtbnYmbfJVaSRjgzIknMY=">AAACD3icbVC7TsMwFHV4lvIKMDCwWFRITFUCFTBWYmEsEn1IbYgcx22tOnZkO0hRlI/gG1hhZkOsfAIjf4LTZqAtR7J8dM69uveeIGZUacf5tlZW19Y3Nitb1e2d3b19++Cwo0QiMWljwYTsBUgRRjlpa6oZ6cWSoChgpBtMbgu/+0SkooI/6DQmXoRGnA4pRtpIvn08CAQLVRqZL0tz//IxM4rOfbvm1J0p4DJxS1IDJVq+/TMIBU4iwjVmSKm+68Tay5DUFDOSVweJIjHCEzQifUM5iojysukBOTwzSgiHQprHNZyqfzsyFKliR1MZIT1Wi14h/uf1Ez288TLK40QTjmeDhgmDWsAiDRhSSbBmqSEIS2p2hXiMJMLaZDY3JYiKTNzFBJZJ56LuXtUb941as1GmUwEn4BScAxdcgya4Ay3QBhjk4AW8gjfr2Xq3PqzPWemKVfYcgTlYX7/o452v</latexit>

y?
3

<latexit sha1_base64="9rl9Np2oTdq3FgUfRaG66oGo8PE=">AAACD3icbVC7TsMwFHXKq5RXgIGBxaJCYqoSVAFjJRbGItGH1IbIcdzWqh1HtoMURfkIvoEVZjbEyicw8ic4bQbaciTLR+fcq3vvCWJGlXacb6uytr6xuVXdru3s7u0f2IdHXSUSiUkHCyZkP0CKMBqRjqaakX4sCeIBI71gelv4vSciFRXRg05j4nE0juiIYqSN5Nsnw0CwUKXcfFma++5jZhSd+3bdaTgzwFXilqQOSrR9+2cYCpxwEmnMkFID14m1lyGpKWYkrw0TRWKEp2hMBoZGiBPlZbMDcnhulBCOhDQv0nCm/u3IEFfFjqaSIz1Ry14h/ucNEj268TIaxYkmEZ4PGiUMagGLNGBIJcGapYYgLKnZFeIJkghrk9nClIAXmbjLCayS7mXDvWo075v1VrNMpwpOwRm4AC64Bi1wB9qgAzDIwQt4BW/Ws/VufVif89KKVfYcgwVYX7/lr52t</latexit>

y?
1

Figure 6.8: Pixel-filter antithetic sampling with vertices reusing: (a) Correlated sets
of light paths are generated so that their intersections y⊥, y⊥1 , y⊥2 and y⊥3 with the image
plane are symmetric around the pixel center. (b) Given an ordinary path x̄ = (x0,x1,y), we
construct its antithesis x̄∗i by replacing only the last vertex with y∗i , yielding x̄∗ = (x0,x1,y

∗
i )

for i = 1, 2, 3.

Constructing Antithetic Paths

We now discuss, given an ordinary path p̄ = (p0, . . . ,pN−1, q), how an antithetic path of the

form p̄∗ = (p0, . . . ,pN−1, q
∗) can be constructed so that the induced mapping from p̄ to p̄∗

is one-to-one. We note that this process will be applied to obtain each antithetic path p̄∗i

for i = 1, 2, 3.

Since p̄ and p̄∗ only differ by the last vertices, the problem amounts to constructing the last

vertex q∗ of the antithetic path p̄∗ in a one-to-one fashion. In the following, we discuss how

q∗ can be constructed based on the ordinary path p̄ and, more specifically, its last vertex q.

Surface vertex. When q is a surface vertex (i.e., q ∈ BM), as illustrated in Figure 6.9-a,

q∗ can be constructed by:

1. Finding the image-plane projection y⊥1 of y = X(p, θ);

2. Obtaining the point y⊥2 by mirroring y⊥1 (based on antithetic sampling pattern);

3. Tracing a camera ray through the image-plane location y⊥2 to obtain the first surface

intersection y∗ (while ignoring all media without refractive interfaces);
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4. Letting q∗ = X−1(y∗, θ).

Since the mapping between image-plane locations y⊥1 and y⊥2 is one-to-one, so is the mapping

between q and q∗.

To calculate the probability density pdf∗(p̄∗), we rely on the relation:

pdf∗(p̄∗) = pdf(p̄)

∥∥∥∥
dA(q∗)

dA(q)

∥∥∥∥ . (6.13)

We now derive the ratio ‖dA(q∗)
dA(q)

‖ on the right-hand side of Eq. (6.13) due to the effective

change of variable from q to q∗. Let φy and φ∗y denote, respectively, the angles from the

camera’s axis of projection ncam to directions −−−−→xcam y and
−−−−→
xcam y

∗. Then,

dA(y) = cos3φy
G0(y↔xcam)

dA(y⊥1 ),

dA(y∗) =
cos3φ∗y

G0(y∗↔xcam)
dA(y⊥2 ),

(6.14)

where G0 is the (standard) geometric term defined in Eq. (2.28). Further, due to the point

symmetry between y⊥1 and y⊥2 on the image plane, we have dA(y⊥1 ) = dA(y⊥2 ). Therefore,

it holds that ∥∥∥∥
dA(y∗)

dA(y)

∥∥∥∥ =
G0(y ↔ xcam) cos3φ∗y
G0(y∗ ↔ xcam) cos3φy

. (6.15)

It follows that ∥∥∥∥
dA(q∗)

dA(q)

∥∥∥∥ =
G0(y ↔ xcam) cos3φ∗y
G0(y∗ ↔ xcam) cos3φy

J(q)

J(q∗)
. (6.16)

In practice, as discussed in §3.3, when estimating derivatives at some θ = θ0 with the

reference surface set to BM = M(θ0), both X(·, θ0) and X−1(·, θ0) become identity maps.

This causes q∗ coincide with y∗, and q with y. Further, the factor J(q)
J(q∗)

in Eq. (6.16)

reduces to one.
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<latexit sha1_base64="Avk/6hvVptfKFG/cqx/cNOFj4C0=">AAACE3icbVC7TsMwFHXKq5RXgLFLRIXEVCUIBGMlFsYi0YfURJHjOK1V24lsB1FFGfgIvoEVZjbEygcw8ic4aQbaciXLR+fcq3vuCRJKpLLtb6O2tr6xuVXfbuzs7u0fmIdHfRmnAuEeimkshgGUmBKOe4ooioeJwJAFFA+C6U2hDx6wkCTm92qWYI/BMScRQVBpyjebbhDTUM6Y/rLH3HcZVBPBMgRZ7pstu22XZa0CpwItUFXXN3/cMEYpw1whCqUcOXaivAwKRRDFecNNJU4gmsIxHmnIIcPSy8ojcutUM6EVxUI/rqyS/TuRQSYLn7qz8CiXtYL8TxulKrr2MsKTVGGO5ouilFoqtopErJAIjBSdaQCRINqrhSZQQKR0bgtbgjITZzmBVdA/bzuXbfvuotW5qNKpgyY4AWfAAVegA25BF/QAAk/gBbyCN+PZeDc+jM95a82oZo7BQhlfv5+en7U=</latexit>xcam

Im
ag
e

pla
ne

<latexit sha1_base64="MKHPEgsBJa+ILlCHSnc8SbFCBPU=">AAACBHicbVDLSgMxFL3js9ZX1aWbYBFclRkp6rLgxmUF+4B2LJlM2oZmkiHJCMPQrd/gVtfuxK3/4dI/MdPOwrYeCDmccy/3cIKYM21c99tZW9/Y3Nou7ZR39/YPDitHx20tE0Voi0guVTfAmnImaMsww2k3VhRHAaedYHKb+50nqjST4sGkMfUjPBJsyAg2VnrsB5KHOo3sl6XTQaXq1twZ0CrxClKFAs1B5acfSpJEVBjCsdY9z42Nn2FlGOF0Wu4nmsaYTPCI9iwVOKLaz2app+jcKiEaSmWfMGim/t3IcKTzaHYywmasl71c/M/rJWZ442dMxImhgswPDROOjER5BShkihLDU0swUcxmRWSMFSbGFrVwJYjyTrzlBlZJ+7LmXdXq9/Vqo160U4JTOIML8OAaGnAHTWgBAQUv8ApvzrPz7nw4n/PRNafYOYEFOF+/TJCZmw==</latexit>y
Pixel
center

<latexit sha1_base64="fyaFUC2t01GJ45BJ5jnjYWe+4tE=">AAAB93icdVDJSgNBEO1xjXGLevTSGARPw4xEjbeAF48JmAWSIfR0apIm3T1Dd48wDPkCr3r2Jl79HI/+iZ1FMC4PCh7vVVFVL0w408bz3p2V1bX1jc3CVnF7Z3dvv3Rw2NJxqig0acxj1QmJBs4kNA0zHDqJAiJCDu1wfDP12/egNIvlnckSCAQZShYxSoyVGqpfKntu9cK7rnr4N/Fdb4YyWqDeL330BjFNBUhDOdG663uJCXKiDKMcJsVeqiEhdEyG0LVUEgE6yGeHTvCpVQY4ipUtafBM/T6RE6F1JkLbKYgZ6Z/eVPzL66YmqgY5k0lqQNL5oijl2MR4+jUeMAXU8MwSQhWzt2I6IopQY7NZ2hKKic3k63H8P2mdu/6lW2lUyrXKIp0COkYn6Az56ArV0C2qoyaiCNADekRPTuY8Oy/O67x1xVnMHKElOG+fCEaT4Q==</latexit>r
<latexit sha1_base64="Avk/6hvVptfKFG/cqx/cNOFj4C0=">AAACE3icbVC7TsMwFHXKq5RXgLFLRIXEVCUIBGMlFsYi0YfURJHjOK1V24lsB1FFGfgIvoEVZjbEygcw8ic4aQbaciXLR+fcq3vuCRJKpLLtb6O2tr6xuVXfbuzs7u0fmIdHfRmnAuEeimkshgGUmBKOe4ooioeJwJAFFA+C6U2hDx6wkCTm92qWYI/BMScRQVBpyjebbhDTUM6Y/rLH3HcZVBPBMgRZ7pstu22XZa0CpwItUFXXN3/cMEYpw1whCqUcOXaivAwKRRDFecNNJU4gmsIxHmnIIcPSy8ojcutUM6EVxUI/rqyS/TuRQSYLn7qz8CiXtYL8TxulKrr2MsKTVGGO5ouilFoqtopErJAIjBSdaQCRINqrhSZQQKR0bgtbgjITZzmBVdA/bzuXbfvuotW5qNKpgyY4AWfAAVegA25BF/QAAk/gBbyCN+PZeDc+jM95a82oZo7BQhlfv5+en7U=</latexit>xcam

Im
ag
e

pla
ne

<latexit sha1_base64="MKHPEgsBJa+ILlCHSnc8SbFCBPU=">AAACBHicbVDLSgMxFL3js9ZX1aWbYBFclRkp6rLgxmUF+4B2LJlM2oZmkiHJCMPQrd/gVtfuxK3/4dI/MdPOwrYeCDmccy/3cIKYM21c99tZW9/Y3Nou7ZR39/YPDitHx20tE0Voi0guVTfAmnImaMsww2k3VhRHAaedYHKb+50nqjST4sGkMfUjPBJsyAg2VnrsB5KHOo3sl6XTQaXq1twZ0CrxClKFAs1B5acfSpJEVBjCsdY9z42Nn2FlGOF0Wu4nmsaYTPCI9iwVOKLaz2app+jcKiEaSmWfMGim/t3IcKTzaHYywmasl71c/M/rJWZ442dMxImhgswPDROOjER5BShkihLDU0swUcxmRWSMFSbGFrVwJYjyTrzlBlZJ+7LmXdXq9/Vqo160U4JTOIML8OAaGnAHTWgBAQUv8ApvzrPz7nw4n/PRNafYOYEFOF+/TJCZmw==</latexit>y
Pixel
center

(a) (b)
<latexit sha1_base64="fH7haQGc1zipRpxfiebL4uPu/Ik=">AAACCHicbVDLSsNAFJ34rPUVdelmsAjioiRS1GXBjcsK9gFtLJPJpB06kwkzk0II+QG/wa2u3Ylb/8Klf+KkzcK2HhjmcM693MPxY0aVdpxva219Y3Nru7JT3d3bPzi0j447SiQSkzYWTMiejxRhNCJtTTUjvVgSxH1Guv7krvC7UyIVFdGjTmPicTSKaEgx0kYa2vbAFyxQKTdfluZPl0O75tSdGeAqcUtSAyVaQ/tnEAiccBJpzJBSfdeJtZchqSlmJK8OEkVihCdoRPqGRogT5WWz5Dk8N0oAQyHNizScqX83MsRVEc5McqTHatkrxP+8fqLDWy+jUZxoEuH5oTBhUAtY1AADKgnWLDUEYUlNVojHSCKsTVkLV3yem07c5QZWSeeq7l7XGw+NWrNRtlMBp+AMXAAX3IAmuAct0AYYTMELeAVv1rP1bn1Yn/PRNavcOQELsL5+AfLemmg=</latexit>

y⇤
<latexit sha1_base64="fH7haQGc1zipRpxfiebL4uPu/Ik=">AAACCHicbVDLSsNAFJ34rPUVdelmsAjioiRS1GXBjcsK9gFtLJPJpB06kwkzk0II+QG/wa2u3Ylb/8Klf+KkzcK2HhjmcM693MPxY0aVdpxva219Y3Nru7JT3d3bPzi0j447SiQSkzYWTMiejxRhNCJtTTUjvVgSxH1Guv7krvC7UyIVFdGjTmPicTSKaEgx0kYa2vbAFyxQKTdfluZPl0O75tSdGeAqcUtSAyVaQ/tnEAiccBJpzJBSfdeJtZchqSlmJK8OEkVihCdoRPqGRogT5WWz5Dk8N0oAQyHNizScqX83MsRVEc5McqTHatkrxP+8fqLDWy+jUZxoEuH5oTBhUAtY1AADKgnWLDUEYUlNVojHSCKsTVkLV3yem07c5QZWSeeq7l7XGw+NWrNRtlMBp+AMXAAX3IAmuAct0AYYTMELeAVv1rP1bn1Yn/PRNavcOQELsL5+AfLemmg=</latexit>

y⇤
<latexit sha1_base64="sD8d5b8GGn+T9mEONsYWLcTR0uw=">AAAB+XicdVDLSgMxFM34rPVVdekmWARxMczUsdPuCm5cVrQPaMeSSTNtaJIZkoxQhn6CW127E7d+jUv/xPQhWNEDFw7n3Mu994QJo0o7zoe1srq2vrGZ28pv7+zu7RcODpsqTiUmDRyzWLZDpAijgjQ01Yy0E0kQDxlphaOrqd96IFLRWNzpcUICjgaCRhQjbaRbeX/eKxQdu+qXLr0qdGy/Wnb8iiFlv+JduNC1nRmKYIF6r/DZ7cc45URozJBSHddJdJAhqSlmZJLvpookCI/QgHQMFYgTFWSzUyfw1Ch9GMXSlNBwpv6cyBBXasxD08mRHqrf3lT8y+ukOqoEGRVJqonA80VRyqCO4fRv2KeSYM3GhiAsqbkV4iGSCGuTztKWkE9MJt+Pw/9Js2S7Zdu78Yo1b5FODhyDE3AGXOCDGrgGddAAGAzAI3gCz1ZmvViv1tu8dcVazByBJVjvXzvilIk=</latexit>

r ⇤

<latexit sha1_base64="9rl9Np2oTdq3FgUfRaG66oGo8PE=">AAACD3icbVC7TsMwFHXKq5RXgIGBxaJCYqoSVAFjJRbGItGH1IbIcdzWqh1HtoMURfkIvoEVZjbEyicw8ic4bQbaciTLR+fcq3vvCWJGlXacb6uytr6xuVXdru3s7u0f2IdHXSUSiUkHCyZkP0CKMBqRjqaakX4sCeIBI71gelv4vSciFRXRg05j4nE0juiIYqSN5Nsnw0CwUKXcfFma++5jZhSd+3bdaTgzwFXilqQOSrR9+2cYCpxwEmnMkFID14m1lyGpKWYkrw0TRWKEp2hMBoZGiBPlZbMDcnhulBCOhDQv0nCm/u3IEFfFjqaSIz1Ry14h/ucNEj268TIaxYkmEZ4PGiUMagGLNGBIJcGapYYgLKnZFeIJkghrk9nClIAXmbjLCayS7mXDvWo075v1VrNMpwpOwRm4AC64Bi1wB9qgAzDIwQt4BW/Ws/VufVif89KKVfYcgwVYX7/lr52t</latexit>

y?
1

<latexit sha1_base64="9rl9Np2oTdq3FgUfRaG66oGo8PE=">AAACD3icbVC7TsMwFHXKq5RXgIGBxaJCYqoSVAFjJRbGItGH1IbIcdzWqh1HtoMURfkIvoEVZjbEyicw8ic4bQbaciTLR+fcq3vvCWJGlXacb6uytr6xuVXdru3s7u0f2IdHXSUSiUkHCyZkP0CKMBqRjqaakX4sCeIBI71gelv4vSciFRXRg05j4nE0juiIYqSN5Nsnw0CwUKXcfFma++5jZhSd+3bdaTgzwFXilqQOSrR9+2cYCpxwEmnMkFID14m1lyGpKWYkrw0TRWKEp2hMBoZGiBPlZbMDcnhulBCOhDQv0nCm/u3IEFfFjqaSIz1Ry14h/ucNEj268TIaxYkmEZ4PGiUMagGLNGBIJcGapYYgLKnZFeIJkghrk9nClIAXmbjLCayS7mXDvWo075v1VrNMpwpOwRm4AC64Bi1wB9qgAzDIwQt4BW/Ws/VufVif89KKVfYcgwVYX7/lr52t</latexit>

y?
1
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Figure 6.9: Construction of antithetic path: Given ordinary light path with the last
vertex y, we build the antithetic path that is identical to the ordinary except for the last
vertex y∗. We construct y∗ such that the mapping between y and y∗ is one-to-one based
on the type of vertex y: (a) When y is a surface vertex (i.e., y ∈ M), we trace a camera
ray xcam → y⊥2 and set y∗ as the first surface intersection while ignoring all medium (with
index-matched interfaces); (b) When y is a volume vertex (i.e., y ∈ V \M), we set y∗ =

xcam + r∗
−−−−−→
xcam y

⊥
2 with some r∗ > 0 such that T (xcam ↔ y) = T (xcam ↔ y∗).

Volume vertex. When q is a volume vertex (i.e., q ∈ BV \BM), we construct the vertex q∗

using a three-step process identical to the aforementioned surface case except for the third

step where we select the spatial point y∗ along the ray xcam → y⊥2 such that, as illustrated

in Figure 6.9-b, the transmittance between xcam and y∗ matches that between xcam and y:

That is, T (xcam ↔ y∗) = T (xcam ↔ y).

Similar to Eq. (6.13) for the surface case, the probability density pdf∗(p̄∗) satisfies that

pdf∗(p̄∗) = pdf(p̄)

∥∥∥∥
dV (q∗)

dV (q)

∥∥∥∥ . (6.17)

Let r = ‖y − xcam‖ and r∗ = ‖y∗ − xcam‖. Then, it is easy to verify:

dV (y)/r2 = cos3φy dA(y⊥1 ) dr,

dV (y∗)/(r∗)2 = cos3φ∗y dA(y⊥2 ) dr∗.

(6.18)

Our construction of the vertex y∗ implies that dA(y⊥1 ) = dA(y⊥2 ) and dr∗/dr = σt(y)/σt(y∗). It

follows that ∥∥∥∥
dV (q∗)

dV (q)

∥∥∥∥ =

∥∥∥∥
dV (y∗)

dV (y)

∥∥∥∥
J(q)

J(q∗)
=

cos3φ∗y (r∗)2 σt(y)

cos3φy r2 σt(y∗)

J(q)

J(q∗)
. (6.19)
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Similar to the surface case, when estimating derivatives at θ = θ0 with the reference volume

set to BV = V(θ0), the factor J(q)/J(q∗) in Eq. (6.19) reduces to one.

Failed constructions. Occasionally, for an ordinary path p̄, the construction of its an-

titheses p̄∗i (presented in §6.4.2) can fail. This happens when: (i) the camera ray for

the antithetic path does not intersect any surface in the scene for the surface case; or

(ii) there does not exist a point y∗ along the ray satisfying the transmittance constraint

T (xcam ↔ y∗) = T (xcam ↔ y). When the construction fails, we simply consider the anti-

thetic path p̄∗ to be nonexistent and set its contribution to zero.

Similarly, when calculating the probability density pdf∗i (p̄) for some path p̄, there may not

exist an ordinary path whose i-th antithesis equals p̄. In this case, we set pdf∗i (p̄) = 0.

Equal-transmittance vs. equal-distance. When y is a volume vertex (Figure 6.9-b),

its antithesis y∗ can also be constructed in a equal-distance fashion by setting r∗ = r rather

than requiring T (xcam ↔ y∗) to match T (xcam ↔ y). This, however, tends to produce higher

variance (see Figure 6.10). On the other hand, when the aforementioned equal-transmittance

construction is difficult—which can happen with heterogeneous media—the equal-distance

variant can be used as a backup.

Handling multiple pixels. When (the supports of) reconstruction filters of neighboring

pixels overlap, one light path p̄ can “intersect” with (i.e., contribute to) multiple pixels. In

this case, for each intersecting pixel j, we construct one antithetic path p̄∗j for using the same

ordinary path p̄, and use our MIS estimator of Eq. (6.20) with p̄ and p̄∗j for this pixel.
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(a) Ordinary (b) FD reference (c) No antithetic (d) Equal-dist. (e) Equal-trans.

Negative Positive

Figure 6.10: Equal-time comparison of derivate images rendered with volumetric adjoint
particle tracing with (c) no antithetic sampling; (d) our equal-distance antithetic sampling
with r∗ = r; and (e) our equal-transmittance antithetic sampling with T (xcam ↔ y∗) =
T (xcam ↔ y). This example contains a homogeneous translucent bunny (without refractive
interfaces) lit by an area light and uses the tent reconstruction filter (6.10). The deriva-
tives (visualized using the same color map as Figure 6.4) are computed with respect to the
horizontal translation of the bunny.

Multiple importance sampling. With both the ordinary path p̄ and its antitheses p̄∗i

generated, we combine their contributions using multiple importance sampling (MIS) via:

w(p̄)
d
dθ
f̂(p̄)

pdf(p̄)
+
∑

i

w∗i (p̄
∗
i )

d
dθ
f̂(p̄∗i )

pdf∗i (p̄
∗
i )
, (6.20)

where w and w∗ are the MIS weighting functions which we set using the balanced heuris-

tics [81]: w(p̄) = pdf(p̄)
pdf(p̄)+

∑
j pdf∗j (p̄)

and w∗i (p̄) =
pdf∗i (p̄)

pdf(p̄)+
∑
j pdf∗j (p̄)

, for any material path p̄ and

i = 1, 2, 3.

6.5 Results

We now evaluate our antithetic sampling techniques introduced earlier in this chapter by com-

paring differentiable rendering results obtained with our approach to finite-difference (FD)

references and baseline methods. We will show more inverse-rendering results in Chapter 8.
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6.5.1 BSDF Antithetic Sampling

We compare derivatives estimated with and without antithetic sampling using two base

differentiable rendering algorithms: unidirectional path tracing with edge sampling [45] in-

dicated as “Edge” and our path-space methods with “PS1” indicating the unidirectional al-

gorithm (I.1) and “PS2” the bidirectional one (I.2). When applying antithetic sampling, we

use our BSDF-level variant (discussed in §6.2) with “Edge” and the path-level one (presented

in §6.4.1) with “PS1” and “PS2”.

In both the edge sampling and path-space framework, an image derivative consists of bound-

ary and interior components. We only show the interior components for comparison since

the estimation of boundary integrals is orthogonal to our work.

Isotropic BSDFs. In Figure 6.11, we show a few scenes with glossy objects depicted with

isotropic microfacet BSDFs.

The teapot scene contains a glossy teapot lit by an area light. The derivatives are computed

with respect to the rotation angle of the teapot (about its vertical axis). Using differentiable

path tracing (Edge) [45], our BSDF antithetic sampling offers a speedup of over 60× to

produce derivative estimates with approximately the same quality. We conduct the equal-

quality comparisons by: (i) generating a reference image with low noise; and (ii) computing

derivative images with and without antithetic sampling progressively until the differences

between the rendered results and the reference drops below a predetermined threshold. At

equal time, standard BSDF sampling produces high variance in specular highlights on the

teapot. When using our antithetic BSDF sampling, on the other hand, much cleaner deriva-

tive estimates can be obtained.

The rest of the examples in Figure 6.11 are rendered using the path-space method. The

Cornell-box scene contains a glossy sphere, and the derivatives are computed using our
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Figure 6.11: Differentiable rendering of isotropic BSDFs: We show (the interior
components of) derivatives estimated with and without our antithetic sampling technique
using different base differentiable rendering methods.

unidirectional algorithm (PS1) with respect to the vertical translation of the sphere. At

equal quality, our path-level antithetic sampling (§6.4.1) offers a 16.2× speedup. At equal

time, the estimated derivatives contain high variance without antithetic sampling. We note

that even the non-glossy regions (such as the diffuse walls) suffer from high noise due to

interreflections. With our technique, in contrast, the variance is greatly reduced.

The bust2 scene consists of a diffuse bust (whose 3D model is from McGuire’s Computer

Graphics Archive [52]) inside a glossy glass dome, and we compute derivatives with respect to
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Figure 6.12: Differentiable rendering of anisotropic BRDFs: We show (the interior
components of) derivatives obtained with and without our antithetic sampling technique
using different base differentiable rendering methods.

the rotation of the bust about its vertical axis. Our antithetic sampling achieves a speedup of

26.7× to generate equal-quality derivative estimates and produces significantly lower variance

at equal time.

Lastly, we reuse the Veach-egg2 scene introduced in §5.3 but with a different view. This

scene contains a glass egg lit by a small spot light, creating caustics on the table. The

derivatives are computed with respect to the vertical translation of the egg. Due to the com-

plexity of light transport in this example, we estimate the derivatives using our bidirectional

algorithm (PS2). Our path-level antithetic sampling provides a 10× speedup and, similar to

the previous examples, offers much cleaner results at equal time.

Anisotropic BRDFs. Our antithetic sampling technique also applies to anisotropic BS-

DFs, which we demonstrate in Figure 6.12. Similar to Figure 6.11, we only show contributions

of the interior terms.

The logo scene shows the virtual image of a SIGGRAPH logo on an anisotropic reflector
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with derivatives computed with respect to the rotation angle of the logo around its horizontal

axis. Our antithetic sampling technique achieves a speedup of 13.2× at equal-quality and

provides considerably more accurate results in equal time.

The saucepan scene contains a glossy saucepan made of brushed metal lit by a small area

light, resulting in characteristic anisotropic highlights on the bottom. When computing

derivatives with respect to the vertical rotation of the saucepan, our technique offers a

speedup of 8.7× at equal quality and much lower image RMSE in equal time.

6.5.2 Pixel-Filter Antithetic Sampling

In §6.3, we have demonstrated in Figures 6.3 and 6.4 the effectiveness of our pixel-filter

antithetic sampling without reusing path vertices. We now evaluate the path-level extension

introduced in §6.4.2 using differentiable-rendering results.

In Figure 6.13, we show results generated using adjoint particle tracing (APT) and bidirec-

tional path tracing (BDPT). As discussed in §6.2, without reusing path vertices, pixel-filter

antithetic sampling has difficulties in supporting methods like APT and BDPT that trace

“shadow rays” toward the camera.

The earth and bust3 examples in Figure 6.13 contain, respectively, a textured diffuse

earth object and a homogeneous translucent bust. Both examples are rendered using APT.

Additionally, the kitty result involves a glossy kitty (from the Digitalized 3D Object Col-

lection [16]) inside a Cornell box lit by an area light facing toward the ceiling, creating

a challenging light-transport situation. The glass-ball example contains a rough glass

sphere lit by a small area light. Both examples are rendered using BDPT. For all examples,

our vertex-reusing technique provides significant variance reduction.
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Figure 6.13: Pixel-filter antithetic sampling with vertices reusing: To demonstrate
the effectiveness of our pixel-filter antithetic sampling (with vertex reusing) (§6.4.1), we show
equal-time comparisons of derivative estimateswith respect to object translations. Results in
(b) and (c) are generated without and with our antithetic sampling, respectively. The earth
and the bust3 examples are generated with volumetric adjoint particle tracing (APT); the
kitty and the glass-ball use bidirectional path tracing (BDPT). All examples use the
tent pixel reconstruction filter.
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6.A Analysis of Antithetic Estimators

Let (Ω, µ) be some measure space. In what follows, we consider the problem of estimating

integrals of the form

I =

∫

Ω

f(x) dµ(x). (6.21)

Specifically, let β : Ω 7→ Ω be a diffeomorphism satisfying that β(β(x)) = x (that is,

β = β−1) and | det Dβ(x)| = 1 for all x ∈ Ω. Then, we will show that

〈I〉dual :=
f(X) + f(β(X))

p(X) + p(β(X))
, (6.22)

is an unbiased estimator of Eq. (6.21) where X is a random variable over Ω with probability

density p (such that f(x) 6= 0 implies p(x) > 0).

Proof of unbiasedness Since the Jacobian determinant of β is assumed to have unit

absolution value, applying a change of variable from x to y = β(x) yields

∫

Ω

f(x) dµ(x) =

∫

Ω

f(y∗) dµ(y), (6.23)

∫

Ω

p(x)
f(x) + f(x∗)

p(x) + p(x∗)
dµ(x) =

∫

Ω

p(y∗)
f(y∗) + f(y)

p(y∗) + p(y)
dµ(y), (6.24)

where x∗ := β(x) and y∗ := β(y). Then, it holds that

E [〈I〉dual] =
1

2

[
2

∫

Ω

p(x)
f(x) + f(x∗)

p(x) + p(x∗)
dµ(x)

]

=
1

2

[∫

Ω

p(x)
f(x) + f(x∗)

p(x) + p(x∗)
dµ(x) +

∫

Ω

p(y∗)
f(y∗) + f(y)

p(y∗) + p(y)
dµ(y)

]

=
1

2

∫

Ω

[f(x) + f(x∗)] dµ(x)

=

∫

Ω

f(x) dµ(x) = I.

(6.25)
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Variance analysis We now analyze on the variance of antithetic sampling, in comparison

to the traditional Monte Carlo estimator

〈I〉single := f(X)/p(X). (6.26)

We have

Var [〈I〉dual]− Var [〈I〉single] =

∫

Ω

p(x)

[
f(x) + f(x∗)

p(x) + p(x∗)

]2

dµ(x)−
∫

Ω

p(x)

[
f(x)

p(x)

]2

dµ(x)

≤
∫

Ω

[f(x) + f(x∗)]2

p(x)
dµ(x)−

∫

Ω

f(x)2

p(x)
dµ(x)

=

∫

Ω

[f(x) + f(x∗)]2 − f(x)2

p(x)
dµ(x).

(6.27)

Thus, if |f(x) + f(x∗)| ≤ |f(x)| for all x ∈ Ω, we have Var[〈I〉dual] ≤ Var[〈I〉single]. In other

words, if we can have f(x) and f(β(x)) to cancel each other out, the antithetic-sampling

estimator given by Eq. (6.22) will offer a lower variance.

6.B Problems of Attached Sampling

Assuming the pixel reconstruction filter can be perfectly importance sampled, the intensity

I of a pixel can also be expressed using a primary-sample-space integral:

I =

∫

[0,1)2
c Li(xcam(θ)→ y⊥(ξ; θ)) dξ, (6.28)

where c is a normalization factor, and Li denotes incident radiance that can, in turn, be

estimated using path integrals (3.9). Additionally, y⊥ : [0, 1)2 7→ I is a mapping that

encodes the importance sampling (of the pixel reconstruction filter) and transforms a primary

sample ξ ∼ U [0, 1)2 to a point on the image plane I. We note that, when the scene
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evolves with a parameter θ, the mapping y⊥ generally depends on θ and, thus, needs to be

differentiated when estimating derivatives of Eq. (6.28). This formulation is also known as

attached sampling [92] (applied to the pixel reconstruction filter P).

Under the attached-sampling-based formulation of Eq. (6.28), for any light path

x̄ = (x0, . . . ,xN−2,y), the last vertex y is given by attached sampling (and ray intersection),

and the remaining ones x0, . . . ,xN−2—which are used to estimate the incident radiance

Li(xcam → y⊥) and its derivative—by our path-space method. Thus, the change rates of

y and x0, . . . ,xN−2 (with respect to θ) are calculated differently where the former is given

differentiating the sampling and ray intersection process:

dy

dθ
=

d

dθ
rayIntersect(xcam(θ)→ y⊥(ξ; θ)), (6.29)

and the latter by differentiating the material-form parameterization:

dxn
dθ

=
d

dθ
X(pn, θ), (6.30)

for all n = 0, 1, . . . , N − 2 with pn being a material point independent of the scene pa-

rameter θ. The discrepancy between Eqs. (6.29) and (6.30) becomes problematic when the

vertex y and its neighbor xN−2 are very close to each other—which can occur at corners or in

participating media (as illustrated in Figure 6.14). Precisely, when the distance ‖y−xN−2‖

between y and xN−2 approaches zero while the difference ‖(dy/dθ)− (dxN−2/θ)‖ between their

derivatives does not, the term
G(y↔xN−2)

dθ /G(y↔xN−2) diverges (i.e., goes to infinity). This term

is a factor of the interior path integral when differentiating Li(xcam → y⊥) in Eq. (6.28).

As demonstrated in Figure 6.15, this divergence can lead to very high variance in resulting

derivative estimates. In contrast, our method uses the same material-form parameterization

for all vertices and, thus, does not suffer from this problem.
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Figure 6.14: Problem of pixel-filter attached sampling: For any light path x̄ =
(x0, . . . ,xN−2,y), when the last vertex y is drawn by applying attached sampling to the pixel
reconstruction filter, the change rate dy/dθ is determined by the sampling process and differ-
entiable ray intersection—which differs from the material-form parameterization (discussed
in §3.2) that give the change rates of other vertices x0, . . . ,xN−2. When the distance between
y and the neighboring vertex xN−2 (e.g., x2 in this figure) approaches to zero—which can
occur at object edges/corners (a) and in the interior of participating media (b)—the change
rates dy/dθ and dxN−2/dθ remain different, leading to highly noisy derivative estimates.

6.C Derivations of Pixel-Filter Antithetic Sampling

We now derive our pixel-filter antithetic sampling technique (§6.4.1). For notation simplicity,

we only consider the light transport between surfaces.

Let p̄ = (p0, . . . ,pN) ∈ Ω̂ be some material light path and X̄(p̄, θ) = (x0, . . . ,xN) ∈ Ω(θ)

be the corresponding ordinary path with xi = X(pi, θ) for i = 0, 1, . . . , N . Given I ⊆

{1, 2, . . . , N − 1} consisting of vertex indices such that BSDF antithetic sampling is needed

at pi for each i ∈ I, we factor out BSDF terms at these vertices in the material measurement

contribution of Eq. (3.10), yielding:

f̂(p̄) = f̂0(p̄)
∏

i∈I

fs[i](p̄), (6.31)

where fs[i](p̄) := fs(xi−1 → xi → xi+1); and f̂0 consists of all the other terms in f̂ including

rough BSDFs that do not need to be antithetically sampled, the geometric terms, and the

Jacobian determinant in Eq. (3.10). Then, according to the product rule, differentiating
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Negative Positive

Figure 6.15: Equal-time comparison of derivative images estimated with the vertex y
drawn using pixel-filter attached sampling (b) and our antithetic sampling (c). All results
use the tent reconstruction filter (6.10) and are rendered with unidirectional path tracing.

Eq. (6.31) gives:

df̂(p̄)

dθ
=

df̂0(p̄)

dθ

∏

i∈I

fs[i](p̄) + f̂0(p̄)
∑

i∈I

dfs[i](p̄)

dθ

∏

j∈I\{i}

fs[j](p̄). (6.32)

It follows that the interior term of Eq. (4.14) can be rewritten as

∫

Ω̂

df̂(p̄)

dθ
dµ(p̄) =

∫

Ω̂

df̂0(p̄)

dθ

(∏

i∈I

fs[i](p̄)

)
dµ(p̄) +

∑

i∈I



∫

Ω̂

f̂0(p̄)
dfs[i](p̄)

dθ


 ∏

j∈I\{i}

fs[j](p̄)


 dµ(p̄)


 . (6.33)

We note that the right-hand side of Eq. (6.33) involves multiple path integrals where the

first one does not involve derivatives of glossy BSDFs and can be handled using an ordinary

path p̄ generated with standard unidirectional or bidirectional method.
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Each remaining path integral, on the other hand, involves exactly one derivative of the form

dfs[i]/dθ. We estimate this integral using p̄ and its antithesis p̄∗i , as discussed in §6.4.1.
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Chapter 7

Efficient Computational

Differentiation

Thus far, our discussion has mostly focused on the differentiation of scalar sensor responses I ∈

R≥0 with respect to one scene parameter θ ∈ R. On the other hand, most practical prob-

lems involve vector-valued sensor responses I ∈ RmI
≥0 (e.g., as an image with mI pixels) and

multiple scene parameters θ ∈ Rmθ . When both the response I and the scene parameters θ

are high-dimensional (i.e., mI and mθ are large), efficient differentiation becomes crucial for

the practicality of differentiable rendering systems.

In this chapter, we devise a mathematical formulation that expresses image-loss gradients as

differential path integrals comprised of an interior and a boundary components (§7.1). Based

on this formulation, we propose an algorithm to efficiently compute the interior component

by exploiting the layered structure of the computation graph (§7.2). Additionally, we discuss

how the boundary component can be estimated in a unified fashion (§7.3).
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7.1 Differential Image-Loss Path Integrals

Physics-based rendering typically involves estimating multiple, say mI , response values (e.g.,

one per pixel). To this end, we make the (material) measurement contribution function to

be vector-valued, denoted as f̂ . Then, the material-form path integral (3.9) can be rewritten

in a vector-valued form as

I =

∫

Ω̂

f̂(p̄) dµ(p̄), (7.1)

where I, f̂(p̄) are mI-dimensional (column, i.e., RmI×1) vectors. Assuming we have mθ

scene parameters denoted as θ ∈ Rmθ×1, by differentiating Eq. (7.1) with respect to θ, it is

easy to verify that the vector-valued form of the differential path integrals (4.14) is

dI

dθ
=

interior∫

Ω̂

df̂(p̄)

dθ
dµ(p̄) +

boundary∫

∂Ω̂

∆f̂K(p̄)v⊥(pK)⊥ dµ̇(p̄) , (7.2)

where dI
dθ

, df̂(p̄)
dθ
∈ RmI×mθ , ∆f̂K(x̄) ∈ RmI×1 and v⊥(pK) ∈ Rmθ×1. We note that, v⊥(pK)

is a vector now since the scalar change rates (along the normal of visibility boundaries) vary

among different scene parameters. Further, although some terms in Eq. (7.2) such as dI
dθ

and

df̂(p̄)
dθ

can be extremely large (i.e., consist of trillions of elements), they do not need to be

stored explicitly when calculating gradients of loss functions, which we will discuss next.

Image-Loss Gradients as Path Integrals

As an important application of differentiable rendering, many inverse-rendering problems

are formulated as finding scene parameters θ ∈ Rmθ minimizing some (scalar-valued) loss L:

θ∗ = arg min
θ
L(I(θ)). (7.3)
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This framing is referred to as analysis by synthesis in computer vision. In practice, the loss

L can also directly depend on θ when, for instance, regularizing scene parameters. This is

orthogonal to our work and we omit this dependency in the remainder of our exposition.

Efficiently solving optimization problems as in Eq. (7.3) requires computing gradients of the

loss L with respect to the scene parameters θ. Based on the chain rule, it holds that

dL
dθ

= (∂IL)
dI

dθ
, (7.4)

where dL
dθ
∈ R1×mθ and ∂IL := ∂L

∂I
∈ R1×mI are row vectors, and dI

dθ
is an (mI ×mθ)-matrix.

Lastly, substituting Eq. (7.2) into Eq. (7.4) yields,

dL
dθ

=

interior∫

Ω̂

(∂IL)
df̂(p̄)

dθ
dµ(p̄) +

boundary∫

∂Ω̂

(∂IL) ∆f̂K(p̄)v(pK)> dµ̇(p̄) , (7.5)

which we term as the differential image-loss path integral. Given Eq. (7.5), we make the

following key observation: Taking as input ∂IL (with the same dimension as I), the gradient

dL/dθ can be computed directly by estimating (interior and boundary) path integrals—that is,

without the need to compute or store the large matrix dI
dθ

(or individual elements of I in a

differentiable fashion).

In what follows, we examine both the interior and the boundary components of Eq. (7.5).

Additionally, we will discuss Monte Carlo estimations of these terms in §7.2 and §7.3.

Interior component. Without loss of generality, the vector-valued form of material mea-

surement contribution function f̂ can be expressed as the product of a vector-valued f̂0 and

a scalar-valued f̂1. That is, for any material path p̄, we have

f̂(p̄) = f̂0(p̄) f̂1(p̄), (7.6)
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Figure 7.1: Given a material light path p̄ = (p0, . . . ,pN−1,pN), its material measurement
contribution f̂(p̄) is typically very sparse where only components corresponding to pixels
that “intersect” the segment xN−1 xN—i.e., pixels whose reconstruction filters have supports
covering the projection of xN−1 on the image plane—are nonzero.

where f̂0(p̄) ∈ RmI×1 and f̂1(p̄) ∈ R.

When the radiometric responses I are the pixels intensities of a perspective pinhole camera—

which is the case we focus on—f̂0(p̄) encodes the per-pixel reconstruction filters, while f̂1(p̄)

captures the product of all the other components—such as BSDFs, geometric terms, and

Jacobian determinants resulting from the material-form parameterization—that are invariant

across pixels. In this case, for any given material light path p̄ = (p0, . . . ,pN−1,pN), f̂0(p̄) ∈

RmI×1 is generally sparse since only pixels whose reconstruction filters “cover” the segment

xN−1 xN will have nonzero values (see Figure 7.1). Let nz(p̄) ⊆ {1, 2, . . . ,mI} denote the

indices of nonzero elements of f̂0(p̄). Then, it holds that the integrand of the interior term

in Eq. (7.5) equals

(∂IL)
df̂

dθ
(p̄) =

∑

r∈nz(p̄)

(∂IL)[r]
d

dθ

(
f̂(p̄)[r]

)
, (7.7)

where (∂IL)[r] and f̂(p̄)[r]—both of which are scalars—denote the r-th components of ∂IL

and f̂(p̄), respectively.

Boundary component. The boundary integral in Eq. (7.5) is unique to differentiable

rendering. Similar to f̂(p̄) in the interior term, ∆f̂K(p̄) in the boundary integral is also

sparse in general, when the radiometric response I are pixel intensities. It follows that the
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integrand of the boundary integral equals

(∂IL) ∆f̂K(p̄)v(pK)> =
∑

r∈nz(p̄)

(∂IL)[r] (∆f̂K(p̄))[r]v(pK)>, (7.8)

where (∆f̂K(p̄))[r] ∈ R denotes the r-th component of ∆f̂K(p̄). Further, the nz(·) function

in Eq. (7.8) is the same as the one in Eq. (7.7), since the set of pixels to which a light

transport path contribute is regardless of whether the path is ordinary or boundary.

7.2 Estimating the Interior Path Integral

Given Eq. (7.7), we can obtain the following unbiased (single-sample) Monte Carlo estimator

of the interior component of the differential image-loss path integral (7.5):

〈∑
r∈nz(p̄)(∂IL)[r] d

dθ

(
f̂(p̄)[r]

)

pdf i(p̄)

〉
, (7.9)

where the material light path p̄ ∈ Ω̂, as discussed in §5.1, is sampled in a non-differentiable

fashion using standard techniques (such as unidirectional path tracing); pdf i(p̄) denotes the

probability density for sampling p̄. Additionally, antithetic sampling techniques, as intro-

duced in Chapter 6, can be applied to better handle glossy BSDFs and pixel reconstruction

filters. For expositional simplicity, we omit the details of these advanced path-sampling

techniques in the remainder of our exposition.

In the following, we present a general method (that is not specific to any path sampling

technique) for efficient evaluation of Eq. (7.9) in §7.2.1, and discuss how this method can be

further optimized in unidirectional (§7.2.2) and bidirectional path tracing (§7.2.3) settings.
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7.2.1 Differentiating Measurement Contributions

Once a material light path p̄ is drawn, the estimation of the interior component of Eq. (7.5)

boils down to: (i) identifying all pixels affected by this path (i.e., nz(p̄)); and (ii) computing

the numerator of Eq. (7.9) for each affected pixel r. Since the first step can typically be done

easily (by examining the segment corresponding to the camera ray), we focus on the second

step in the following.

Given any material light path p̄ = (p0, . . . ,pN), for all θ ∈ Rmθ×1, let x̄ = X̄(p̄,θ) =

(x0, . . . ,xN) be the corresponding ordinary path (where xn = X(pn,θ) for 0 ≤ n ≤ N). The

material measurement contribution defined in Eq. (3.10) can be rewritten as

f̂(p̄)[r] =

[
N∏

n=0

f̂v(xn−1 → xn → xn+1)

][
N−1∏

n=0

G(xn ↔ xn+1)

]
, (7.10)

where G is the generalized geometric term defined in Eq. (2.28). Additionally,

f̂v(xn−1 → xn → xn+1) := fv(xn−1 → xn → xn+1) J(pn), (7.11)

where J defined in Eq. (3.11) is the Jacobian determinant resulting from the material-form

parameterization (i.e., the change of variable from xn to pn); and fv(xn−1 → xn → xn+1)

defined in (2.27) captures the contribution of the vertex xn. To be specific,

� When 0 < n < N , fv(xn−1 → xn → xn+1) is given by the surface BSDF or the scaled

single-scattering phase function at xn;

� When n = 0, fv(x−1 → x0 → x1) := Le(x0 → x1) captures the emission at x0 (with

x−1 being a dummy variable);

� When n = N , fv(xN−1 → xN → xN+1) := W
(r)
e (xN−1 → xN) represents the response

of pixel r and encodes the pixel reconstruction filter (with xN+1 being a dummy vari-
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Algorithm 4: Efficient differentiation of material measurement contribu-
tion f̂(p̄)[r] in Eq. (7.7) with respect to scene parameters θ

1 ComputerMeasurementContribution(θ, p̄, r)
Input: Scene parameters θ, a material path p̄ = (p0, . . . ,pN), and a pixel index r
Output: f̂(p̄)[r] and its gradient df̂(p̄)[r]/dθ

2 begin
/* Forward pass (layer 1) */

3 xn = X(pn,θ) for each 0 ≤ n ≤ N ;
/* Forward pass (layer 2) */

4 gn = f̂v(xn−1 → xn → xn+1) for each 0 ≤ n ≤ N ;
5 gn = G(xn−N−1 ↔ xn−N) for each N < n ≤ 2N ;

/* Forward pass (layer 3) */

6 f̂ =
∏2N

n=0 gn;
/* Backward pass (layer 2): compute dgn := df̂/dgn */

7 dgn = f̂
gn

for each 0 ≤ n ≤ 2N ; // df̂
dgn

=
∏
n′ 6=n gn′ = f̂

gn

/* Backward pass (layer 1): compute dxn := df̂/dxn */

8 foreach 0 ≤ n ≤ N do

9 (dxn−1, dxn, dxn+1) += dgn
∂f̂v(xn−1→xn→xn+1)
∂(xn−1,xn,xn+1)

;

10 end
11 foreach 0 ≤ n < N do

12 (dxn, dxn+1) += dgN+1+n
∂G(xn↔xn+1)
∂(xn,xn+1)

;

13 end
/* Backward pass (layer 0) compute dθ := df̂/dθ */

14 dθ =
∑N

n=0 dxn
∂X(pn,θ)

∂θ
;

15 return (f̂ , dθ);

16 end

able).

Evaluating Eq. (7.9) requires computing the gradient of Eq. (7.10) with respect to the scene

parameters θ. Since Eq. (7.10) is a scalar-valued expression (per color channel or wave-

length), the computation can be implemented using standard reverse-mode automatic differ-

entiation; however, when the light path p̄ contains many vertices, evaluating Eq. (7.10) will

involve a great number of computations that require a large computation graph to represent.

As observed in prior work [61], this can be problematic for storage (e.g., precluding GPU

implementation) and performance.
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<latexit sha1_base64="QQAv0v1CLmifkm1jYbu96EnVZUY=">AAACNXicbVDLSsNAFJ3UV62vqEs3g0Wom5JIURGEghuXFWwtNCFMppN26EwSZibFEvI1foTf4FZXLlwI4tZfcNJmYVsvDHM4517uPcePGZXKst6N0srq2vpGebOytb2zu2fuH3RklAhM2jhikej6SBJGQ9JWVDHSjQVB3GfkwR/d5PrDmAhJo/BeTWLicjQIaUAxUpryzGtniFQaZJ7DkRoKno6zmuNHrC8nXH/pY+alVgYdFcFF2s5OPbNq1a1pwWVgF6AKimp55qfTj3DCSagwQ1L2bCtWboqEopiRrOIkksQIj9CA9DQMESfSTac2M3iimT4MIqFfqOCU/TuRIi7z+3RnbkYuajn5n9ZLVHDppjSME0VCPFsUJAxq03lmsE8FwYpNNEBYUH0rxEMkEFY62bktPs90JvZiAsugc1a3z+uNu0a1eVWkUwZH4BjUgA0uQBPcghZoAwyewAt4BW/Gs/FhfBnfs9aSUcwcgrkyfn4Bmg2uMg==</latexit>

f̂v(x0 ! x1)

<latexit sha1_base64="uoWOcHB0JIKmzGKIk99/JY8F1tA=">AAACMHicbVDLTgIxFO3gC/GFunTTSExwQ2YMUeKKxIUuMZFHAoR0SgcaOtNJe0clk/kVP8JvcKtrXRm2foUFZiHgTZqenHNu7r3HDQXXYNtfVmZtfWNzK7ud29nd2z/IHx41tIwUZXUqhVQtl2gmeMDqwEGwVqgY8V3Bmu7oZqo3H5nSXAYPMA5Z1yeDgHucEjBUL1+5LXZcKfp67Jsvfk56sZ3gjmAeKD4YAlFKPuFli5Oc9/IFu2TPCq8CJwUFlFatl590+pJGPguACqJ127FD6MZEAaeCJblOpFlI6IgMWNvAgPhMd+PZhQk+M0wfe1KZFwCesX87YuLr6X7G6RMY6mVtSv6ntSPwKt2YB2EELKDzQV4kMEg8jQv3uWIUxNgAQhU3u2I6JIpQMKEuTHH9xGTiLCewChoXJeeyVL4vF6rXaTpZdIJOURE56ApV0R2qoTqi6AW9oXf0Yb1an9a3NZlbM1bac4wWyvr5Baxqq68=</latexit>

G(x0 $ x1)

<latexit sha1_base64="2pRj2ofMmNUrYKdEIvvyeLprbxw=">AAACNHicbVDLSgMxFM34flt16SZYhLqwzEhREReCC11WsCp0hpJJM20wkwzJHbUM8zN+hN/gVneCGxG3foOZtgttvRByOOdc7r0nTAQ34LpvzsTk1PTM7Nz8wuLS8spqaW39yqhUU9agSih9ExLDBJesARwEu0k0I3Eo2HV4e1ro13dMG67kJfQSFsSkI3nEKQFLtUrHZxU/VKJterH9soe8lUm8i70c+4JFoHmnC0RrdY/HbPlOq1R2q26/8DjwhqCMhlVvlT78tqJpzCRQQYxpem4CQUY0cCpYvuCnhiWE3pIOa1ooScxMkPWvzPG2Zdo4Uto+CbjP/u7ISGyK/awzJtA1o1pB/qc1U4gOg4zLJAUm6WBQlAoMCheR4TbXjILoWUCo5nZXTLtEEwo22D9Twji3mXijCYyDq72qt1+tXdTKJ0fDdObQJtpCFeShA3SCzlEdNRBFj+gZvaBX58l5dz6dr4F1whn2bKA/5Xz/AD0GrPA=</latexit>

G(xn�1 $ xn)

<latexit sha1_base64="m3Hub7ioMsFB2QbG6iVFNUVC1RQ=">AAACNHicbVDLSgMxFM34flt16SZYhIpQZqSoiAvBhS4rWBU6Q8mkmTaYSYbkjlqG+Rk/wm9wqzvBjYhbv8FM24W2Xgg5nHMu994TJoIbcN03Z2Jyanpmdm5+YXFpeWW1tLZ+ZVSqKWtQJZS+CYlhgkvWAA6C3SSakTgU7Dq8PS306zumDVfyEnoJC2LSkTzilIClWqXjs4ofKtE2vdh+2UPeymSOfcEi0LzTBaK1usdjFryLvXynVSq7VbdfeBx4Q1BGw6q3Sh9+W9E0ZhKoIMY0PTeBICMaOBUsX/BTwxJCb0mHNS2UJGYmyPpX5njbMm0cKW2fBNxnf3dkJDbFjtYZE+iaUa0g/9OaKUSHQcZlkgKTdDAoSgUGhYvIcJtrRkH0LCBUc7srpl2iCQUb7J8pYZzbTLzRBMbB1V7V26/WLmrlk6NhOnNoE22hCvLQATpB56iOGoiiR/SMXtCr8+S8O5/O18A64Qx7NtCfcr5/AF2erO4=</latexit>

G(xn $ xn+1)

<latexit sha1_base64="A3rcBFXHyzCC86OIcx8NNr71KeQ="></latexit>

G(xN�1 $ xN )

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...
<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>... <latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

<latexit sha1_base64="DC4o/GTsrv8LyIe7hhvyCDLkz4E=">AAAB/HicbVA9TwJBEN3DL8Qv1NJmIzGxIneGqCXRxhITARO4kL29PVjZvb3szpGQC/4GW63tjK3/xdJ/4gJXCPiSSV7em8nMvCAR3IDrfjuFtfWNza3idmlnd2//oHx41DIq1ZQ1qRJKPwbEMMFj1gQOgj0mmhEZCNYOhrdTvz1i2nAVP8A4Yb4k/ZhHnBKwUqs7ChWYXrniVt0Z8CrxclJBORq98k83VDSVLAYqiDEdz03Az4gGTgWblLqpYQmhQ9JnHUtjIpnxs9m1E3xmlRBHStuKAc/UvxMZkcaMZWA7JYGBWfam4n9eJ4Xo2s94nKTAYjpfFKUCg8LT13HINaMgxpYQqrm9FdMB0YSCDWhhSyAnNhNvOYFV0rqoepfV2n2tUr/J0ymiE3SKzpGHrlAd3aEGaiKKntALekVvzrPz7nw4n/PWgpPPHKMFOF+/kuSV4Q==</latexit>...

Layer 0 Layer 1 Layer 2 Layer 3

Figure 7.2: A layered computation graph for evaluating the material measurement con-
tribution f̂(p̄)[r]. All terms on which f̂v(xn−1 → xn → xn+1) depends are highlighted in
orange. We omitted the vertices pn of the material path p̄ as they are independent of the
scene parameters θ.

Exploiting independencies. To address this problem, we make an important observation

that the individual f̂v and G terms on the right-hand side of Eq. (7.10) can be evaluated

in a largely independent fashion—even if the parameters θ control scene geometry. This is

thanks to the material-form parameterization: the gradient dxn
dθ

of each path vertex xn can

be computed independently by differentiating the mapping X(·,θ). That is,

dxn
dθ

=
∂X(pn,θ)

∂θ
(for all 0 ≤ n ≤ N). (7.12)

Figure 7.2 illustrates the computation graph for evaluating f̂(p̄)[r]. This graph consists

of several layers where all nodes in each layer can be evaluated independent of each other.

Exploiting this structure, we evaluate the gradient df̂(p̄)[r]
dθ

by traversing the computation

graph in a layer-by-layer fashion.

As shown in Algorithm 4, our technique first performs a forward pass that evaluates f̂(p̄)[r]
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followed with a backward pass that computes the gradient df̂(p̄[r])
dθ

. During the latter pass, the

gradients ∂f̂v(xn−1→xn→xn+1)
∂(xn−1,xn,xn+1)

, ∂G(xn↔xn+1)
∂(xn,xn+1)

, and ∂X(pn,θ)
∂θ

from Lines 9, 12 and 14, respectively,

can be computed efficiently using standard reverse-mode automatic differentiation.

In what follows, we discuss how Algorithm 4 can be further optimized for unidirectional and

bidirectional path tracing – two widely adopted path sampling methods.

7.2.2 Path-Tracing-Specific Optimizations

Unidirectional path tracing with next-event estimation (NEE) constructs a single detector

subpath p̄D = (pD
0 , . . . ,p

D
N) coupled with a set of vertices pS

1, . . . ,p
S
N obtained by sampling

emitter surfaces. For every 0 < n ≤ N , connecting pD
n and pS

n produces a full light transport

path

p̄n = (pS
n,p

D
n ,p

D
n−1, . . . ,p

D
0 ), (7.13)

as illustrated in Figure 7.3.1 Then, the interior component of Eq. (7.5) can be estimated by

summing Eq. (7.9) over all p̄n:

〈
N∑

n=1

∑
r∈nz(p̄n)(∂IL)[r] d

dθ

(
f̂(p̄n)[r]

)

pdfNEE(p̄n)

〉
. (7.14)

Although this expression can be evaluated by applying Algorithm 4 to each path p̄n individ-

ually, doing so would lead to suboptimal performance since many terms such as G(xD
0 ↔ xD

1 )

will be computed (and differentiated) multiple times.

To address this problem, noting that nz(p̄n) = nz(p̄D) for all 0 < n ≤ N , we rearrange the

1Strictly speaking, we need to also consider two-vertex paths of the form (pS0 ,p
D
0 ). We neglect this corner

case to simplify our derivations.
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<latexit sha1_base64="VHExGB/Vk9Qcj6woRv3RztOO4VY=">AAACE3icbVC7TsMwFHXKq5RXgLGLRYXEVCWoAiZUCQbGItGH1IbIcZzWqp1EtoOoogx8BN/ACjMbYuUDGPkTnDYDbbmS5aNz7tU993gxo1JZ1rdRWlldW98ob1a2tnd298z9g46MEoFJG0csEj0PScJoSNqKKkZ6sSCIe4x0vfFVrncfiJA0Cu/UJCYOR8OQBhQjpSnXrA68iPlywvWXPmb3A47USPD0OnMt16xZdWtacBnYBaiBolqu+TPwI5xwEirMkJR924qVkyKhKGYkqwwSSWKEx2hI+hqGiBPppNMjMnisGR8GkdAvVHDK/p1IEZe5T92Ze5SLWk7+p/UTFVw4KQ3jRJEQzxYFCYMqgnki0KeCYMUmGiAsqPYK8QgJhJXObW6LxzOdib2YwDLonNbts3rjtlFrXhbplEEVHIETYINz0AQ3oAXaAIMn8AJewZvxbLwbH8bnrLVkFDOHYK6Mr18OcJ9l</latexit>

xD
0

<latexit sha1_base64="gL8+d+GTcVAV18BFPoSK8PTB/Q8=">AAACE3icbVC7TsMwFHXKq5RXgLGLRYXEVCWoAiZUCQbGItGH1IbIcZzWqp1EtoOoogx8BN/ACjMbYuUDGPkTnDYDbbmS5aNz7tU993gxo1JZ1rdRWlldW98ob1a2tnd298z9g46MEoFJG0csEj0PScJoSNqKKkZ6sSCIe4x0vfFVrncfiJA0Cu/UJCYOR8OQBhQjpSnXrA68iPlywvWXPmb3A47USPD0OnNt16xZdWtacBnYBaiBolqu+TPwI5xwEirMkJR924qVkyKhKGYkqwwSSWKEx2hI+hqGiBPppNMjMnisGR8GkdAvVHDK/p1IEZe5T92Ze5SLWk7+p/UTFVw4KQ3jRJEQzxYFCYMqgnki0KeCYMUmGiAsqPYK8QgJhJXObW6LxzOdib2YwDLonNbts3rjtlFrXhbplEEVHIETYINz0AQ3oAXaAIMn8AJewZvxbLwbH8bnrLVkFDOHYK6Mr18QA59m</latexit>

xD
1

<latexit sha1_base64="T+JwMCqliVAIAatzvFfqbvgsXr8=">AAACE3icbVC7TsMwFHXKq5RXgLGLRYXEVCVVBUyoEgyMRaItUhsix3Faq3YS2Q6iijLwEXwDK8xsiJUPYORPcNoMtOVKlo/OuVf33OPFjEplWd9GaWV1bX2jvFnZ2t7Z3TP3D7oySgQmHRyxSNx5SBJGQ9JRVDFyFwuCuMdIzxtf5nrvgQhJo/BWTWLicDQMaUAxUppyzerAi5gvJ1x/6WN2P+BIjQRPrzK34Zo1q25NCy4DuwA1UFTbNX8GfoQTTkKFGZKyb1uxclIkFMWMZJVBIkmM8BgNSV/DEHEinXR6RAaPNePDIBL6hQpO2b8TKeIy96k7c49yUcvJ/7R+ooJzJ6VhnCgS4tmiIGFQRTBPBPpUEKzYRAOEBdVeIR4hgbDSuc1t8XimM7EXE1gG3UbdPq03b5q11kWRThlUwRE4ATY4Ay1wDdqgAzB4Ai/gFbwZz8a78WF8zlpLRjFzCObK+PoFEZafZw==</latexit>

xD
2

<latexit sha1_base64="395b5FmXxOUImYa9E2pbyURJurE=">AAACE3icbVC7TsMwFHV4lvIKMHaJqJCYqgQqYEKVYGAsEn1IbYgcx2mt2k5kO4gqysBH8A2sMLMhVj6AkT/BaTPQlitZPjrnXt1zjx9TIpVtfxtLyyura+uljfLm1vbOrrm335ZRIhBuoYhGoutDiSnhuKWIorgbCwyZT3HHH13leucBC0kifqfGMXYZHHASEgSVpjyz0vcjGsgx01/6mN33GVRDwdLrzDv1zKpdsydlLQKnAFVQVNMzf/pBhBKGuUIUStlz7Fi5KRSKIIqzcj+ROIZoBAe4pyGHDEs3nRyRWUeaCawwEvpxZU3YvxMpZDL3qTtzj3Jey8n/tF6iwgs3JTxOFOZouihMqKUiK0/ECojASNGxBhAJor1aaAgFRErnNrPFZ5nOxJlPYBG0T2rOWa1+W682Lot0SqACDsExcMA5aIAb0AQtgMATeAGv4M14Nt6ND+Nz2rpkFDMHYKaMr18TKZ9o</latexit>

xD
3

<latexit sha1_base64="yqwDKlGwJ0IPlACNGGWwPsso2ZQ=">AAAB/HicbVA9SwNBEN2LXzF+RS1tFoNgFe4kqJUEbCwjmA9IjrC3t5es2b09dueEcMTfYKu1ndj6Xyz9J26SK0zig4HHezPMzAsSwQ247rdTWFvf2Nwqbpd2dvf2D8qHRy2jUk1ZkyqhdCcghgkesyZwEKyTaEZkIFg7GN1O/fYT04ar+AHGCfMlGcQ84pSAlVo9ESow/XLFrboz4FXi5aSCcjT65Z9eqGgqWQxUEGO6npuAnxENnAo2KfVSwxJCR2TAupbGRDLjZ7NrJ/jMKiGOlLYVA56pfycyIo0Zy8B2SgJDs+xNxf+8bgrRtZ/xOEmBxXS+KEoFBoWnr+OQa0ZBjC0hVHN7K6ZDogkFG9DClkBObCbecgKrpHVR9S6rtftapX6Tp1NEJ+gUnSMPXaE6ukMN1EQUPaIX9IrenGfn3flwPuetBSefOUYLcL5+AYHKldM=</latexit>. . .

<latexit sha1_base64="svMhIJIoYt9fR377NuwU9+IDySM=">AAACE3icbVC7TsMwFHXKq5RXgLGLRYXEVCWoAiZUiYWxCPqQ2hA5jtNatZPIdhBVlIGP4BtYYWZDrHwAI3+C02agLVeyfHTOvbrnHi9mVCrL+jZKK6tr6xvlzcrW9s7unrl/0JFRIjBp44hFouchSRgNSVtRxUgvFgRxj5GuN77K9e4DEZJG4Z2axMThaBjSgGKkNOWa1YEXMV9OuP7Sx+x+wJEaCZ7eZq7tmjWrbk0LLgO7ADVQVMs1fwZ+hBNOQoUZkrJvW7FyUiQUxYxklUEiSYzwGA1JX8MQcSKddHpEBo8148MgEvqFCk7ZvxMp4jL3qTtzj3JRy8n/tH6iggsnpWGcKBLi2aIgYVBFME8E+lQQrNhEA4QF1V4hHiGBsNK5zW3xeKYzsRcTWAad07p9Vm/cNGrNyyKdMqiCI3ACbHAOmuAatEAbYPAEXsAreDOejXfjw/ictZaMYuYQzJXx9QsnzZ91</latexit>

xS
1
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xS
2

Figure 7.3: With next-event estimation (NEE), a unidirectional path tracer effectively con-
structs a set of light paths that share one detector subpath (xD

0 ,x
D
1 , . . .) shown in blue. The

arrows in this figure illustrates the flow of light. We present a technique to efficiently com-
pute and differentiate the measurement contribution of all paths by factoring out common
terms.

terms of Eq. (7.14) and obtain:

∑

r∈nz(p̄D)

(∂IL)[r]
dhNEE

dθ
where hNEE :=

N∑

n=1

f̂(p̄n)[r]

pdfNEE(p̄n)
, (7.15)

with pdfNEE(p̄n) treated as “detached” (i.e., independent of θ). To efficiently compute

Eq. (7.15), similar to how unidirectional path tracing is implemented for forward rendering,

we factor out the common terms in the inner summation of Eq. (7.15). Let

hD
n := f̂v(xD

n+1 → xD
n → xD

n−1)G(xD
n+1 ↔ xD

n ), (7.16)

hS
n :=

f̂v(xS
0 → xD

n → xD
n−1)G(xS

0 ↔ xD
n ) L̂e(x

S
0 → xD

0 )

pdfNEE(p̄n)
, (7.17)

where L̂e(x
S
0 → xD

0 ) := Le(x
S
0 → xD

0 ) J(pS
0) captures the emission at xS

0. Then, it is easy to

verify that, for all 0 < n ≤ N ,

f̂(p̄n)[r]

pdfNEE(p̄n)
=

(
n∏

n′=0

hD
n′

)
hS
n. (7.18)

It follows that

hNEE = hD
0

(
hS

1 + hD
1

(
hS

2 + hD
2

(
hS

3 + hD
3 (. . .)

)))
, (7.19)
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which can be differentiated in a layered fashion using a process similar to Algorithm 4.

Specifically, in the forward pass, we first obtain the path vertices xD
n = X(pD

n ,θ) and xS
n =

X(pS
n,θ) for all n (layer 1), followed with computing individual hD

n and hS
n terms (layer 2).

Then, we evaluate hNEE (layer 3). In the backward pass, we start with obtaining derivatives

dhD
n := dhNEE

dhDn
and dhS

n := dhNEE

dhSn
(layer 2) by differentiating Eq. (7.19). Then, we evaluate

dhNEE

dxD
n

and dhNEE

dxS
n

(layer 1) followed with the gradient dhNEE

dθ
(layer 0) that can be used to

estimate the interior integral via Eq. (7.15).

7.2.3 BDPT-Specific Optimizations

A bidirectional path tracer typically constructs a source subpath p̄S = (pS
0,p

S
1, . . .) and

a detector subpath p̄D = (pD
0 ,p

D
1 , . . .). Let p̄s,t be the material light path obtained by

connecting the s-th vertex in the source subpath and the t-th vertex in the detector subpath.

That is, p̄s,t = (pS
0, . . . ,p

S
s ,p

D
t , . . . ,p

D
0 ). Then, it holds that the interior integral in Eq. (7.5)

can be estimated using

〈∑

s,t

∑

r∈nz(p̄s,t)

ws,t(p̄s,t)
(∂IL)[r] d

dθ

(
f̂(p̄s,t)[r]

)

pdfs,t(p̄s,t)

〉
, (7.20)

where pdfs,t is the probability density (for sampling a path with s vertices from the source

and t from the detector), and ws,t is the corresponding multiple-importance-sampling (MIS)

weight.

To evaluate Eq. (7.20) numerically, we start with constructing the source and detector

subpaths p̄S and p̄D followed with computing the PDFs pdfs,t(p̄s,t) and the MIS weights

ws,t(p̄s,t) for all s and t. Since none of these terms need to be differentiated, they can be

computed in a similar way as conventional BDPT does (for forward rendering). Then, we

evaluate (in a differentiable fashion) the BSDF and geometric terms along both the source
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subpath p̄S and the detector subpath p̄D in a layered fashion similar to Algorithm 4. Lastly,

we reuse these terms to evaluate the gradient df̂(p̄s,t)[r]

dθ
for all s and t while avoiding duplicate

computation/differentiation.

7.2.4 Relation with Prior Works

Our technique presented above is closely related to some recent works [61, 84], which for-

mulate image-loss gradients as solutions of an adjoint transport problem. We will show that

some key results in these work can be considered a specific realization of Eq. (7.5). To do

so, we first assume the following:

� The scene parameters θ ∈ Rmθ×1 do not control object geometry (i.e., do not affect

visibility discontinuities);

� The vector-valued measurement contribution satisfies f(x̄) = We(x̄) f1(x̄) whereWe(x̄) ∈

RmI×1 indicates the detector responses, and f1(x̄) ∈ R captures the remaining measurement-

contribution terms;

� We is independent of the scene parameters θ.

Given these assumptions, Eq. (7.5) simplifies to

dL
dθ

=

∫

Ω

(∂IL)We(x̄)︸ ︷︷ ︸
=:Ae(x̄)

df1

dθ
(x̄) dµ(x̄). (7.21)

In practice, the detector responses We usually depend only on the last segment xN−1 xN of

a light path x̄ – that is, We(x̄) = We(xN → xN−1). This allows further simplification of

Eq. (7.21) as

dL
dθ

=

∫

M2

Ae(xN−1 → xN)

[∫

Ω

df1

dθ
(x̄) dµ(x̄−)

]
dA(xN−1) dA(xN), (7.22)
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where x̄− is a light path given by x̄ with its last two vertices xN−1 and xN removed.

Eq. (7.22) is equivalent to a key result in §3.3 of the radiative backpropagation work [61].

Moreover, a key idea in path replay backpropagation [84] is to reuse light transport paths

when recursively expanding the differential rendering equation. Under the differential path

integral formulation, this is equivalent to applying the product rule when differentiating

the measurement contributions. Specifically, given a material light path p̄, assume f̂(p̄) =
∏

n gn(p̄) with gn(p̄) capturing individual components (e.g., BSDFs and geometric terms) of

f̂(p̄). Then, ∫

Ω̂

df̂(p̄)

dθ
dµ(p̄) =

∫

Ω̂

(∑

n

dgn(p̄)

dθ

∏

n′ 6=n

gn′(p̄)

)
dµ(p̄). (7.23)

The path replay idea essentially states that the right-hand side of this equation can be com-

puted by reusing one path sample p̄, which leads to a natural practice under the differential

path integral formulation (as is indeed the case for Algorithm 4).

7.3 Estimating the Boundary Path Integral

Eq. (7.8) induces an unbiased (single-sample) Monte Carlo estimator of the boundary com-

ponent of the differential image-loss path integral (7.5) as

〈∑
r∈nz(p̄)(∂IL)[r] (∆f̂K(p̄))[r]v(pK)>

pdfb(p̄)

〉
, (7.24)

where the boundary light path p̄ ∈ ∂Ω̂ can be sampled in a multi-directional fashion (starting

with the boundary segment) as discussed in §5.2; and pdfb(p̄) denotes the probability density

for sampling p̄.

With the boundary path p̄ sampled, evaluating the numerator of Eq. (7.24) is, in fact,

relatively inexpensive. This is because, with ∂IL provided, the only term in the numerator
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that requires differentiation is the scalar change rate v(pK)—as oppose to the evaluation

of the interior integral (§7.2) that requires differentiating the full material measurement

contribution. Specifically, it holds that

v(pK) =

(
dpK
dθ

)>
n(pK), (7.25)

where n(pK) is a three-dimensional (column) vector representing the unit normal of the

visibility boundary at pK . Further, the calculation of the spatial point pK—which generally

depends on the parameters θ—has been presented in §5.2.5 via, for example, Eqs. (5.28) and

(5.32). To obtain v(pK) using reverse-mode automatic differentiation, we let

V (pK) := p>K n(pK). (7.26)

Then, it is easy to verify that, with the normal n(pK) fixed (i.e., set independent of θ), V

is an “anti-gradient” of v satisfying

v(pK) =
d

dθ
V (pK). (7.27)

It follows that the scalar-valued expression

p>K

(
n(pK)

∑
r∈nz(p̄)(∂IL)[r] (∆f̂K(p̄))[r]

pdfb(p̄)

)
, (7.28)

with all the terms expect the first (i.e., p>K) fixed, is an “anti-gradient” of Eq. (7.24). Thus,

by applying reverse-mode automatic differentiation (i.e., backward) to the result of this ex-

pression, we can accumulate the contribution given by Eq. (7.24) to the final gradient dL
dθ

.
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Chapter 8

Application: Physics-Based Inverse

Rendering

As a main application of differentiable rendering, inverse rendering (aka. analysis by syn-

thesis) is concerned with recovering a set of scene parameters θ ∈ Rmθ (such as material or

geometric properties of objects in the scene) from one or multiple input images Ĩ ∈ RmI . This

process is normally be formulated as the optimization of some predetermined (scalar-valued)

loss Ltot:

θ∗ = arg min
θ
Ltot(I(θ),θ; Ĩ) (8.1)

where I(θ) ∈ RmI denotes images generated with parameters θ (provided by forward ren-

dering), and each component of Ĩ and I(θ) stores the intensity of an image pixel.

Loss function. The loss Ltot in Eq. (8.1) is a crucial ingredient for solving inverse-rendering

problems and typically formulated as the sum of an image loss L and a regularization loss Lreg
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Scene parameters 𝜽
Target Image

Image loss

Physics-based

Diff. Renderer

Image 𝑰(𝜽)

Iterate

Figure 8.1: The typical optimization pipeline for gradient-based inverse rendering applica-
tions. In this iterative process, the derivatives generated by the differentiable renderer is the
key for updating the scene parameters θ.

weighted with λ ∈ R>0:

Ltot(I(θ),θ; Ĩ) := L(I(θ), Ĩ) + λLreg(θ). (8.2)

In practice, the image loss L can be simple L1 or L2 differences (between I(θ) and Ĩ), or

more sophisticated neural metrics [74, 35, 56, 72]. The regularization loss Lreg can encode

simple smoothness conditions (e.g., using image or mesh Laplacian) or complex data-driven

priors.

Solving inverse rendering problems. The inverse-rendering optimization in Eq. (8.1)

is typically solved using gradient-based methods. For example, when using (stochastic)

gradient descent, one starts with some initial guess θ(0) that is then updated iteratively for

t = 0, 1, . . . via:

θ(t+1) = θ(t) − γ(t)

(
dLtot

dθ

∣∣∣∣
θ=θ(t)

)
, (8.3)
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where θ(t) ∈ Rmθ indicates the parameter values at iteration t, and γ(t) ∈ R denotes the

learning rate (or step size) for that iteration. Further, more advanced optimization methods

like Adam [42] replace the scalar step sizes γ(t) with preconditioning matrices M (t) ∈ Rmθ×mθ

computed based on the parameter values θ(t′) for t′ ≤ t.

Applying the iterative update outlined in Eq. (8.3) requires computing the gradient dLtot
dθ

at

θ = θ(t):

dLtot

dθ

∣∣∣∣
θ=θ(t)

=
dL
dθ

∣∣∣∣
θ=θ(t)

+
dLreg

dθ

∣∣∣∣
θ=θ(t)

, (8.4)

where, according to the chain rule, it holds that

dL
dθ

∣∣∣∣
θ=θ(t)

=

(
∂L
∂I

∣∣∣∣
I=I(θ(t))

)(
dI

dθ

∣∣∣∣
θ=θ(t)

)
. (8.5)

In Eqs. (8.4) and (8.5), dLreg
dθ

∣∣∣
θ=θ(t)

and ∂L
∂I

∣∣
I=I(θ(t))

are obtained, respectively, using differ-

entiable evaluations of the regularization and image losses Lreg and L. The image gradient

dI
dθ

∣∣
θ=θ(t)

, on the other hand, requires differentiable rendering—the main focus of this disser-

tation. We show an overview of the inverse-rendering optimization process in Figure 8.1.

Moreover, as discussed in Chapter 7, the image-loss gradient dL
dθ

∣∣
θ=θ(t)

in Eq. (8.4) can be

estimated efficiently using differential image-loss path integrals (7.5) by taking as input

∂L
∂I

∣∣
I=I(θ(t))

. This avoid storing the full image gradient dI
dθ

∣∣
θ=θ(t)

(or the corresponding global

computation graph).

In what follows, to further demonstrate the practical usefulness of our path-space differen-

tiable rendering techniques introduced in the earlier chapters, we provide several synthetic

inverse-rendering examples in §8.1 and §8.2 using gradients estimated with these methods.
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8.1 Inverse Rendering Comparisons

We now demonstrate the effectiveness of our techniques by comparing inverse-rendering

results produced by our methods and a variety of baselines.

All our results are generated using an educational CPU-based implementation that has been

released with our previous publications [94, 96, 93].

Configurations. For all comparisons in this section, we set the image loss L as the

root-mean-square error (RMSE) between one target image and the corresponding render-

ing and apply no additional regularization (i.e., Lreg ≡ 0). Additionally, we use the Adam

method [42] to solve the optimizations. To ensure fairness, we use identical initial states θ(0)

and learning rates for each comparison.

8.1.1 Comparisons with Non-Path-Space Methods

As demonstrated in §5.3.2, our Monte Carlo estimators (I.1, I.2) based on the formulation

of differential path integrals scale well to scenes with complex geometries. Additionally, our

bidirectional estimator (I.2) is capable of efficiently handling complex light-transport effects

like caustics. In the following, we compare inverse-rendering results with gradients estimated

with our methods and several previous (non-path-space) methods.

Complex geometry. We first demonstrate the effectiveness of our technique using ex-

amples with complex geometries and compare inverse-rendering results generated by Monte

Carlo edge sampling [45, 95], biased reparameterization [49], and our methods.

Figure 8.2 shows an example that reuses the branches2 scene described in §5.3. We use

two inverse-rendering setting with identical initial configurations but different targets where
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Figure 8.2: Inverse rendering comparisons using the branches2 scene with the object’s
rotation angle being optimized. All methods are configured to have equal sample count per
pixel. We show rendered images produced by each method after the last iteration with ours
marked in purple, edge sampling in orange, and reparameterization in green. The image
and parameter RMSE plots are color-coded the same way, and the latter is not used for
optimization.

the object is rotated, respectively, by 0.2 and 0.6 radian (from the initial). Under the first

setting, all methods including the biased reparameterization method, manage to converge

to the correct answer. Under the second setting, on the other hand, the reparameterization

approach fails to converge properly due to its high bias. Under both settings, our method

runs significantly faster than edge sampling while producing much cleaner derivatives.

In Figure 8.3, we show inverse-rendering processes of the puffer-ball scene with the light

sources sizes being optimized. Details of this scene can be found in §5.3. Due to the very

high face count, edge sampling produces too much noise for the optimization to converge

properly. Our technique again produces clean and unbiased derivative estimates, allowing

the optimization to converge easily.

126



InitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitialInitial TargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTargetTarget OursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOursOurs EdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdgeEdge Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.Reparam.

80 160
# Iterations

8.3
8.4
8.5
8.7
8.81e−2 Img. RMSE (Ours)

80 160
# Iterations

0

2
Param. RMSE (Ours)

80 160
# Iterations

0.92
0.96
1.001.00

1e−1 Img. RMSE (Edge)

80 160
# Iterations

0

2
Param. RMSE (Edge)

80 160
# Iterations

Img. RMSE (Reparam.)

80 160
# Iterations

0

2
Param. RMSE (Reparam.)

Figure 8.3: Inverse rendering comparisons using the puffer-ball scene with the light
source sizes being optimized. All methods are configured to use equal sample count per
pixel, and the visualization scheme follows that of Figure 8.2.

The experiments are conducted on a workstation equipped with an octa-core Intel i7-7820X

CPU and an Nvidia Titan RTX graphics card. The performance statistics for therse two

equal-sample comparisons are included in Table 8.1.

Complex light-transport effects. To further demonstrate the advantage of our bidi-

rectional estimator (I.2), we use the Veach-egg2 scene, whose derivative comparisons are

provided in Figure 5.7, with a new inverse-rendering setup where the position of the spot light

and the refractive index of the glass egg are optimized jointly. We compare the performance

of our unidirectional and bidirectional methods as well as edge sampling [45, 95]. We adjust

the sample counts so that each iteration takes roughly equal time for all methods. We do not

include the reparameterization method [49] for this comparison as its implementation does

not support derivatives with respect to refractive indices. As shown in Figure 8.4, gradients

Table 8.1: Performance statistics for the inverse-rendering comparisons in Figures 8.2, 8.3.
The “time” numbers indicate average computation time (in seconds) per iteration, including
the overhead (shown in parentheses) for precomputing importance-sampling grid (discussed
in §5.2.4).

Scene # param. # iter. Time Time Time
(Ours) (Edge) (Reparam.)

Branches2 1 140 0.5 (0.1) 5.7 0.3
Puffer ball 3 160 4.5 (2.0) 28.6 1.5
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Figure 8.4: Inverse rendering comparison using the Veach-egg2 scene with the spot
light’s location and the glass egg’s refractive index optimized jointly. The optimizations
are configured so that each iteration takes equal time for all methods, and the visualization
scheme follows that of Figure 8.2.

estimated with edge sampling are too noisy for the optimization to converge properly. Those

produced by our unidirectional algorithm (I.1) have higher quality but are still noisy, prevent-

ing the optimization from finding to the exact solution. The bidirectional variant (I.2), on

the other hand, produce significantly cleaner gradient estimates that allow the optimization

to converge smoothly to the global optimum.

Volumetric light transport. We now provide a set of comparisons where volumetric light

transport is involved in Figure 8.5. We compare the inverse-rendering performance of our

method and DTRT to demonstrate the usefulness of our low-variance derivative estimates.

We adjust sample counts so that each optimization iteration takes approximately equal time.

For the branches and bust scenes in this figure, we use the exact scene and parameter

configurations given in §5.3. For the bumpy-sphere scene, we replace the point light with

a small area light since DTRT only supports the latter.

For the branches scene, gradient-based optimizations driven by both methods converge

correctly. Our method offers faster convergences thanks to its cleaner derivative estimates.

For the bust and bumpy-sphere scenes, optimizations using gradients estimated by DTRT

fail to converge due to very high variance in the estimated gradients. Our method, on the
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Figure 8.5: Inverse-rendering comparisons using gradients estimated with our technique
and DTRT [95]. The sample count is adjusted so that both methods take approximately
equal time per iteration.

other hand, allows smooth convergence to the correct results.

8.1.2 Antithetic Sampling for Inverse Rendering

Now, to highlight the importance of low-variance derivative estimates attributed from anti-

thetic sampling discussed in Chapter 6, we compare the inverse rendering performance using

derivatives estimated with and without this technique.

BSDF antithetic sampling. We now show inverse-rendering results with and without

BSDF antithetic sampling (§6.2) using our unidirectional and bidirectional algorithms (I.1,

I.2) labeled as “PS1” and “PS2”, respectively, as the base methods.

Figure 8.6 uses a glass-bunny scene where a glass bunny model is rotated around the verti-
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Figure 8.6: Inverse-rendering comparison using glass-bunny scene: We search for
the rotation angle of the glass bunny to match the target image by minimizing the image
RMSE (the plotted parameter RMSE information is used for evaluation only). The visualized
derivatives involve both interior and boundary contributions with the latter estimated using
the base method for both results.

cal axis (as illustrated in “Config.”). Using our unidirectional estimator (I.1), the derivative

images (including both interior and boundary contributions) corresponding to the initial

configuration are shown in the top row. These images are generated in equal time, and

the one using antithetic sampling (i.e., PS1+Antithetic) enjoys much lower noise. This re-

duced variance makes a significant difference in inverse rendering performance by allowing

the inverse-rendering optimization to converge nicely. Without antithetic sampling, on the

other hand, the optimization fails to converge.

In Figure 8.7, we show a mug scene consisting of a small area light inside a near-specular

glass mug, creating complex caustics on the surface below, as illustrated in “Config.”. Given

a target image with the desired caustics pattern, we solve for the position (depicted with

three parameters) of the area light. We use the bidirectional path-space algorithm as the base

method for this example. Without antithetic sampling, even with our bidirectional estimator

(I.2), the derivative image remains very noisy, causing the optimization to have difficulties

in converging. With antithetic sampling, on the other hand, the derivative estimates become
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Figure 8.7: Inverse-rendering comparison using mug scene: We search for the 3D
location of the area light inside the glass mug to match the caustics patterns on the surface
below. Similar to Figure 8.6, the visualized derivatives involve both interior and boundary
contributions.

significantly cleaner, leading to much easier convergence.

Lastly, we show in Figure 8.8 an Einstein scene that contains an area light with spatially

varying emission displaying a distorted photo of Einstein. The emitted light is then reflected

by a glossy surface before reaching the camera. Given a target reflection that is non-distorted,

we solve for the shape of this surface (parameterized using 100 variables). Without antithetic

sampling, our unidirectional estimator (I.1) fails to converge within 300 iterations. On the

contrary, with antithetic sampling, the optimization successfully recovers the target geometry

(as illustrated using the height maps).

Pixel-filter antithetic sampling. To demonstrate the practical effectiveness of our pixel-

filter antithetic sampling with vertices reusing (§6.4.2), we compare inverse-rendering results

with and without this technique.

In Figure 8.9, the vol-bunny example includes a translucent bunny under area lighting.

The Kitty2 result uses a configuration similar to that in Figure 6.13 with a Cornell box con-
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Figure 8.8: Inverse-rendering comparison using Einstein scene: We search for the
shape of the glossy reflector (parameterized using 100 variables) so that the reflection matches
the target. We visualize the target and optimized reflector geometries as height maps on the
bottom row.

taining a kitty and an area light facing the ceiling. We use our unidirectional and bidirectional

estimators (I.1, I.2) for the two examples, respectively. For both examples, we optimize the

object shapes by minimizing the image loss (using 20 target images) and use Nicolet et al.’s

method [58] to update mesh vertex positions (provided the estimated gradients). The re-

duced variance offered by our antithetic sampling technique has allowed both optimizations

to converge more quickly, resulting in reconstructed geometries with lower error (measured

by Chamfer distances [6]).

8.2 Additional Inverse-Rendering Results

We now show additional inverse-rendering results generated using our new CPU-based im-

plementation that utilize the efficient differentiation algorithms presented in Chapter 7 and

the Enzyme automatic differentiation framework [55].

We show examples using gradients estimated with our unidirectional algorithm (I.1) in Fig-
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Figure 8.9: We show inverse-rendering comparisons of derivatives estimated with (c) and
without (d) our pixel-filter antithetic sampling with vertices reusing (presented in
§6.4.2). The mesh error numbers shown under visualized geometries in (c1) and (d1) as well
as plotted in (c2) and (d2) indicate the Chamfer distances [6] between the reconstructed and
groundtruth geometries (normalized so that the GT has a unit bounding box). We use this
information only for evaluation (and not for optimization).

ures 8.10 and 8.11 as well as bidirectional estimator (I.2) in Figure 8.12. Additionally,

Table 8.2 summarizes optimization configurations and performance statistics.

In Figure 8.10, the white-bunny scene contains a diffuse bunny inside a box. The glossy-

kitty scene contains a glossy kitty inside a Cornell box, exhibiting strong interreflections.

The coin scene has a very detailed coin geometry. All there scenes are lit by area illumina-

tion. For each of these three scenes, we take multiple input image views (only one is shown

in the figure) and solve for object shapes by minimizing L1 image loss.
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Table 8.2: Optimization configuration and performance statistics for our inverse-rendering
results. The “render time” numbers indicate per-iteration computation time for estimating
image-loss gradients; and “postproc. time” captures the cost for updating mesh vertices
(using Nicolet et al.’s method [58]). All experiments are conducted on a workstation with
an AMD Ryzen 5950X 16-core CPU.

Scene # Target # Param. Batch # Iter. Render Postproc.
images size time time

white-Bunny 40 30,000 2 1,000 8.40s 0.38s
glossy-Kitty 50 30,000 2 1,000 4.67s 0.35s

Coin 20 1,500,000 3 100 30.57s 11.45s
Glass-pawn 40 60,000 2 1,000 4.06s 0.37s
Letter-Y 30 15,000 4 200 9.06s 0.97s

Cube-in-glass 50 30,004 2 500 12.75s 0.23s
glossy-bunny2 50 150,000 4 600 34.52s 1.75s

Caustics 1 651 1 300 6.46s 0.03s

Additionally, Figure 8.11 demonstrates our ability to treat scenes with non-opaque (i.e.,

transparent or translucent) objects: These settings preclude the use of simpler differentiable

rasterization-based or direct illumination-only methods. The glass-pawn scene contains a

pawn made of blue rough glass. The letter-Y scene has a Y-shaped object containing a

volumetric homogeneous participating medium; our system is sufficiently fast to explicitly

treat volumetric scattering effects. The cube-in-glass scene is comprised of a diffuse cube

inside a rough glass enclosure; the cube is only visible after refraction, complicating the

inverse-rendering problem. For each scene, similar to the examples shown in Figure 8.10,

we take multiple input images of the object (only showing one in the figure) and optimize

the object’s shape starting from a spherical initialization. In the cube-in-glass scene, we

jointly optimize the albedo of the diffuse object, the roughness of the glass, and the cube

geometry.

Lastly, Figure 8.12 illustrates results leveraging our bidirectional estimator (I.2). The glossy-

kitty2 scene contains a Cornell box with a glossy kitty, comprising more complex secondary

transport and a flipped area emitter that faces and illuminates the ceiling (instead of the

central objects), resulting in a mostly indirectly-lit scene. We optimize the shape of the
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glossy object (initialized as a sphere) to minimize image loss. The caustics scene is an

underwater setting with a glossy Lucy object. This time, with a single target image, we

optimize the shape of the air-water interface without every directly viewing the surface.
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Figure 8.10: Inverse-rendering results obtained with gradients estimated using our uni-
directional estimator (I.1). The mesh error plotted in column (e) captures the Chamfer
distance [6] between the reconstructed and groundtruth geometries (normalized so that the
GT has a unit bounding box). We use this information only for evaluation (and not for
optimization).
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Figure 8.11: Inverse-rendering results obtained with gradients estimated using our uni-
directional estimator (I.1). All examples in this figure involve non-opaque (i.e., transparent
or translucent) objects that cannot be easily handled by simple rasterization-based or direct-
illumination-only differentiable renderers. The mesh, reflectance, and roughness errors are
used for evaluation only (and not for optimization).
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Figure 8.12: Inverse-rendering results obtained with gradients estimated using our bidi-
rectional estimator (I.2). The mesh error is used for evaluation only (and not for optimiza-
tion).
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Chapter 9

Conclusion

Physics-based differentiable rendering focuses on differentiating photorealistic forward ren-

derings with respect to arbitrary scene parameters. Being crucial for not only solving inverse-

rendering problems but also integrating physics-based forward rendering into probabilistic-

inference and machine-learning pipelines, differentiable-rendering techniques have applica-

tions in a wide array of areas such as computer graphics, vision, computational imaging, and

computational fabrication.

This dissertation establishes a new theoretical framework for physics-based differentiable

rendering and introduces a family of new path-space algorithms based on this framework.

Our main contributions are summarized in the following.

Differential path integral. We introduced the theoretical framework of differential path

integrals (Chapter 4) that offers the generality of differentiating both interfacial and volu-

metric light transport with respect to arbitrary scene parameters. To devise the differential

path integrals, we rewrote forward-rendering path integrals [81, 65] in the material form

(Chapter 3), where the domain of integration is independent of the scene parameters.
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Path-space differentiable rendering algorithms. Based on the new framework, we

developed new Monte Carlo methods that provide unbiased and consistent estimations of

the interior and boundary components of differential path integrals (Chapter 5). Specifically,

for efficient estimation of the boundary component, we introduced a multi-directional method

(Algorithm 1) that does not require explicitly searching for object silhouettes. In practice, our

techniques are capable of efficiently handling complex scene geometries and light-transport

effects such as soft shadows, interreflection, and caustics.

Antithetic sampling. To further improve the efficiency and robustness when estimating

the interior components of differential path integrals, we introduced antithetic sampling to

path-space differentiable rendering (Chapter 6). Specifically, we developed new antithetic

sampling algorithms for efficient differentiation of glossy BSDFs and pixel reconstruction fil-

ters. In addition, we demonstrated how these algorithms to be applied for full light transport

paths (as opposed to individual vertices).

Efficient differentiation. Lastly, for efficiently handling large numbers (e.g., 106–109)

of scene parameters, we presented the formulation of differentiable image-loss path inte-

grals (Chapter 7) that directly expresses image-loss gradients as differential path integrals.

Based on this formulation, we developed algorithms that efficiently compute the interior

components by exploiting the layered structure of computation graphs. In addition, we

demonstrated how the boundary integrals can be handled in a unified fashion.

9.1 Future Research Topics

General light-transport formulations. Our theory and algorithms presented in the

earlier chapters have assumed steady-state and unpolarized light transport. Thus, extending
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our techniques to more general (e.g., polarized) light-transport scenarios is an interesting

topic for future research. Notably, Wu et al. [89] have recently introduced the formulation

of time-gated differential path integrals based on our theory to differentiate time-of-flight

renderings.

Advanced differentiable rendering systems. To integrate differentiable rendering in

inverse-rendering or machine-learning pipelines, efficient systems are as important, if not

more so, as sophisticated theories. Thankfully, significant progresses have been made re-

cently in the development of efficient differentiable renderers such as Redner [45] and Mit-

suba 2 [62] as well as automatic differentiation frameworks such as Enoki [31], Dr. Jit [33],

and Enzyme [55].

In this regard, one important direction for future research and development is to build new

differentiable rendering systems based on our path-space algorithms introduced in the earlier

chapters. To ensure practical usefulness, these systems need to be capable of efficiently

handling complex virtual scenes with large numbers of parameters. Ideally, these systems

should also support models, such as BSDFs, expressed using neural networks. One example

in this direction is the recently released PSDR-CUDA [91] renderer that implements some of

our path-space algorithms on the GPU using a wavefront design.

Physics-based inverse rendering. As discussed in Chapter 8, a major application of

differentiable rendering is to solve inverse-rendering problems. Although we only showed

synthetic results in this chapter, our technique has been used by several recent works for

reconstructing 3D models of real-world objects.

Specifically, Luan et al. [50] have developed an approach to jointly reconstruct the shape and

reflectance of a real-world object. Cai et al. [8] have recently introduced an inverse-rendering

pipeline that utilizes both implicit (e.g., SDF) and explicit (e.g., meshes) representations
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of object geometries. Additionally, Deng et al. [15] have extended our technique for 3D

reconstruction of translucent objects.

Physics-based learning. Lastly, with efficient differentiable rendering systems, integrat-

ing physics-based forward rendering into machine-learning pipelines is worth exploring.

We believe that strategically combining data-driven methods and inverse-rendering (aka.

analysis-by-synthesis) optimizations has the potential to yield new physics-based learning

techniques that enjoy a new level of robustness and generalizability.
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